A new multifield determination of the galaxy luminosity function at z=7-9 incorporating the 2012 Hubble Ultra-Deep Field imaging
View/ Open
Date
11/07/2013Author
Grant ID
ST/J001651/1
Keywords
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We present a new determination of the ultraviolet (UV) galaxy luminosity function (LF) at redshift z ≃ 7 and 8, and a first estimate at z ≃ 9. An accurate determination of the form and evolution of the galaxy LF during this era is of key importance for improving our knowledge of the earliest phases of galaxy evolution and the process of cosmic reionization. Our analysis exploits to the full the new, deepest Wide Field Camera 3/infrared imaging from our Hubble Space Telescope (HST) Ultra-Deep Field 2012 (UDF12) campaign, with dynamic range provided by including a new and consistent analysis of all appropriate, shallower/wider area HST survey data. Our new measurement of the evolving LF at z ≃ 7 to 8 is based on a final catalogue of ≃600 galaxies, and involves a step-wise maximum-likelihood determination based on the photometric redshift probability distribution for each object; this approach makes full use of the 11-band imaging now available in the Hubble Ultra-Deep Field (HUDF), including the new UDF12 F140W data, and the latest Spitzer IRAC imaging. The final result is a determination of the z ≃ 7 LF extending down to UV absolute magnitudes M1500 = -16.75 (AB mag) and the z ≃ 8 LF down to M1500 = -17.00. Fitting a Schechter function, we find M1500* = -19.90-0.28+0.23, log φ* = -2.96-0.23+0.18 and a faint-end slope α = -1.90-0.15+0.14 at z ≃ 7, and M1500* = -20.12-0.48+0.37, log φ* = -3.35-0.47+0.28 and α = -2.020.230.22 at z ≃ 8. These results strengthen previous suggestions that the evolution at z > 7 appears more akin to 'density evolution' than the apparent 'luminosity evolution' seen at z ≃ 5 - 7. We also provide the first meaningful information on the LF at z ≃ 9, explore alternative extrapolations to higher redshifts, and consider the implications for the early evolution of UV luminosity density. Finally, we provide catalogues (including derived zphot, M1500 and photometry) for the most robust z ∼ 6.5-11.9 galaxies used in this analysis. We briefly discuss our results in the context of earlier work and the results derived from an independent analysis of the UDF12 data based on colour-colour selection.
Citation
McLure , R J , Dunlop , J S , Bowler , R A A , Curtis-Lake , E , Schenker , M , Ellis , R S , Robertson , B E , Koekemoer , A M , Rogers , A B , Ono , Y , Ouchi , M , Charlot , S , Wild , V , Stark , D P , Furlanetto , S R , Cirasuolo , M & Targett , T A 2013 , ' A new multifield determination of the galaxy luminosity function at z=7-9 incorporating the 2012 Hubble Ultra-Deep Field imaging ' , Monthly Notices of the Royal Astronomical Society , vol. 432 , no. 4 , pp. 2696-2716 . https://doi.org/10.1093/mnras/stt627
Publication
Monthly Notices of the Royal Astronomical Society
Status
Peer reviewed
ISSN
0035-8711Type
Journal article
Rights
© 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society
Description
RJM acknowledges the support of the European Research Council via the award of a Consolidator Grant, and the support of the Leverhulme Trust via the award of a Philip Leverhulme research prize. JSD, RAAB, TAT and VW acknowledge the support of the European Research Council via the award of an Advanced Grant to JSD. JSD also acknowledges the support of the Royal Society via a Wolfson Research Merit award. ABR and EFCL acknowledge the support of the UK Science & Technology Facilities Council. The US authors acknowledge financial support from the Space Telescope Science Institute under award HST-GO-12498.01-A. SRF is partially supported by the David and Lucile Packard Foundation. SC acknowledges the support of the European Commission through the Marie Curie Initial Training Network ELIXIR.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Related items
Showing items related by title, author, creator and subject.
-
SDSS-IV MaNGA: How the stellar populations of passive central galaxies depend on stellar and halo mass
Oyarzún, Grecco A.; Bundy, Kevin; Westfall, Kyle B.; Tinker, Jeremy L.; Belfiore, Francesco; Argudo-Fernández, Maria; Zheng, Zheng; Conroy, Charlie; Masters, Karen L.; Wake, David; Law, David R.; McDermid, Richard M.; Aragón-Salamanca, Alfonso; Parikh, Taniya; Yan, Renbin; Bershady, Matthew; Sánchez, Sebastián F.; Andrews, Brett H.; Fernández-Trincado, José G.; Lane, Richard R.; Bizyaev, D.; Boardman, Nicholas Fraser; Lacerna, Ivan; Brownstein, J. R.; Drory, Niv; Zhang, Kai (2022-07-06) - Journal articleWe analyze spatially resolved and co-added SDSS-IV MaNGA spectra with signal-to-noise ratio ∼100 from 2200 passive central galaxies (z ∼ 0.05) to understand how central galaxy assembly depends on stellar mass (M*) and halo ... -
Secular-and merger-built bulges in barred galaxies
Mendez Abreu, Jairo; Debattista, V. P.; Corsini, E. M.; Aguerri, J. A. L. (2014-12) - Journal articleContext. Historically, galaxy bulges were thought to be single-component objects at the center of galaxies. However, this picture is now questioned since different bulge types with different formation paths, namely classical ... -
Galaxy And Mass Assembly (GAMA) : galaxy close pairs, mergers and the future fate of stellar mass
Robotham, A. S. G.; Driver, S. P.; Davies, L. J. M.; Hopkins, A. M.; Baldry, I. K.; Agius, N. K.; Bauer, A. E.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cluver, M.; De Propris, R.; Drinkwater, M. J.; Holwerda, B. W.; Kelvin, L. S.; Lara-Lopez, M. A.; Liske, J.; Lopez-Sanchez, A. R.; Loveday, J.; Mahajan, S.; McNaught-Roberts, T.; Moffett, A.; Norberg, P.; Obreschkow, D.; Owers, M. S.; Penny, S. J.; Pimbblet, K.; Prescott, M.; Taylor, E. N.; van Kampen, E.; Wilkins, S. M. (2014-11-11) - Journal articleWe use a highly complete subset of the Galaxy And Mass Assembly II (GAMA-II) redshift sample to fully describe the stellar mass dependence of close pairs and mergers between 10(8) and 10(12)M(circle dot). Using the analytic ...