St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

A particle based simulation model for glacier dynamics

Thumbnail
View/Open
Benn_2013_TC_AParticle.pdf (2.429Mb)
Date
08/10/2013
Author
Astrom, J. A.
Riikila, T. I.
Tallinen, T.
Zwinger, T.
Benn, D.
Moore, J. C.
Timonen, J.
Keywords
Discrete element model
Ice-sheet
Size distributions
Tidewater glaciers
Calving glaciers
Basal conditions
Bergy bits
Icebergs
Hydrodynamics
Stability
G Geography (General)
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
A particle-based computer simulation model was developed for investigating the dynamics of glaciers. In the model, large ice bodies are made of discrete elastic particles which are bound together by massless elastic beams. These beams can break, which induces brittle behaviour. At loads below fracture, beams may also break and reform with small probabilities to incorporate slowly deforming viscous behaviour in the model. This model has the advantage that it can simulate important physical processes such as ice calving and fracturing in a more realistic way than traditional continuum models. For benchmarking purposes the deformation of an ice block on a slip-free surface was compared to that of a similar block simulated with a Finite Element full-Stokes continuum model. Two simulations were performed: (1) calving of an ice block partially supported in water, similar to a grounded marine glacier terminus, and (2) fracturing of an ice block on an inclined plane of varying basal friction, which could represent transition to fast flow or surging. Despite several approximations, including restriction to two-dimensions and simplified water-ice interaction, the model was able to reproduce the size distributions of the debris observed in calving, which may be approximated by universal scaling laws. On a moderate slope, a large ice block was stable and quiescent as long as there was enough of friction against the substrate. For a critical length of frictional contact, global sliding began, and the model block disintegrated in a manner suggestive of a surging glacier. In this case the fragment size distribution produced was typical of a grinding process.
Citation
Astrom , J A , Riikila , T I , Tallinen , T , Zwinger , T , Benn , D , Moore , J C & Timonen , J 2013 , ' A particle based simulation model for glacier dynamics ' , The Cryosphere , vol. 7 , no. 5 , pp. 1591-1602 . https://doi.org/10.5194/tc-7-1591-2013
Publication
The Cryosphere
Status
Peer reviewed
DOI
https://doi.org/10.5194/tc-7-1591-2013
ISSN
1994-0416
Type
Journal article
Rights
© Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 License (https://creativecommons.org/licenses/by/3.0/)
Description
This publication is contribution number 22 of the Nordic Centre of Excellence SVALI, “Stability and Variations of Arctic Land Ice”, funded by the Nordic Top-level Research Initiative (TRI). The work has been supported by the SVALI project through the University of Lapland, Arctic Centre, and through the University Centre in Svalbard. Funding was also provided by the Conoco-Phillips and Lunding High North Research Program (CRIOS: Calving Rates and Impact on Society).
Collections
  • University of St Andrews Research
URL
http://www.the-cryosphere.net/7/1591/2013/
URI
http://hdl.handle.net/10023/5052

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter