Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.advisorAshbrook, Sharon E.
dc.contributor.authorSeymour, Valerie Ruth
dc.coverage.spatial346en_US
dc.date.accessioned2013-06-12T14:48:44Z
dc.date.available2013-06-12T14:48:44Z
dc.date.issued2013-06-26
dc.identifieruk.bl.ethos.574781
dc.identifier.urihttps://hdl.handle.net/10023/3672
dc.description.abstractIn this work, multinuclear solid-state nuclear magnetic resonance (NMR) spectroscopy is used to investigate a range of inorganic materials, often in combination with DFT (density functional theory) studies. Solid-state NMR is particularly suited to the study of aluminophosphates (AlPOs), as the basic components of their frameworks have NMR active isotopes (²⁷Al, ³¹P, ¹⁷O), as do many of the atoms that comprise the structure directing agent (¹³C, ¹H, ¹⁵N), and the charge-balancing anions (OH⁻, F⁻). A study of the AlPO STA-15 (St Andrews microporous solid-15) provides an introduction to using solid-state NMR spectroscopy to investigate AlPOs. More in-depth studies of AlPO STA-2 (St Andrews microporous solid-2) and MgAPO STA-2 (magnesium-substituted AlPO) examine charge-balancing mechanisms in AlPO-based materials. A range of scandium carboxylate metal-organic frameworks (MOFs), with rigid and flexible frameworks, have been characterised by multinuclear solid-state NMR spectroscopy (⁴⁵Sc, ¹³C and ¹H). The materials studied contain a variety of metal units and organic linkers. ¹³C and ¹H magic-angle spinning (MAS) NMR were used to study the organic linker molecules and ⁴⁵Sc MAS NMR was used to study the scandium environment in the MOFs Sc₂BDC₃ (BDC = 1,4-benzenedicarboxylate), MIL-53(Sc), MIL-88(Sc), MIL-100(Sc) and Sc-ABTC (ABTC = 3,3`,5,5`-azobenzenetetracarboxylate). Functionalised derivatives of Sc₂BDC₃ and MIL-53(Sc) were also studied. The ⁴⁵Sc MAS NMR spectra are found to be strongly dependant on the Sc³⁺ coordination environment. ²⁷Al and ²⁵Mg MAS NMR have been used to study Ti-bearing hibonite samples (of general formula Ca(Al, Ti, Mg)₁₂O₁₉), and results compared to a recent complementary neutron powder diffraction study, in order to investigate the substitution sites for Ti³⁺/⁴⁺ and Mg²⁺. A DFT investigation was also carried out on the aluminium end member, CaAl₁₂O₁₉, due to debate in the literature on the ²⁷Al NMR parameters for the trigonal-bipyramidal site. The substitution of Mg onto the tetrahedral site (M3) and Ti primarily onto one of the octahedral sites (M4) is supported.en_US
dc.language.isoenen_US
dc.publisherUniversity of St Andrews
dc.subjectSolid-state NMRen_US
dc.subjectAluminophosphateen_US
dc.subjectMetal-organic frameworken_US
dc.subjectHiboniteen_US
dc.subjectDFTen_US
dc.subject.lccQD96.N8S4
dc.subject.lcshNuclear magnetic resonance spectroscopyen_US
dc.subject.lcshDensity functionalsen_US
dc.subject.lcshSolid state chemistryen_US
dc.subject.lcshInorganic chemistryen_US
dc.titleMultinuclear solid-state NMR for the characterisation of inorganic materialsen_US
dc.typeThesisen_US
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePhD Doctor of Philosophyen_US
dc.publisher.institutionThe University of St Andrewsen_US


This item appears in the following Collection(s)

Show simple item record