St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Overcoming limited selectivity in recognition-mediated replicating systems

Thumbnail
View/Open
HarryMackenzieMPhilThesis.pdf (50.29Mb)
Date
2012
Author
MacKenzie, Harry
Supervisor
Philp, Douglas
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
Traditionally, synthetic chemistry has always focused on yielding a target compound from the linear application of chemical transformations. After each step, a single compound is usually required and the presence of mixtures often demands lengthy purification prior to the next synthetic step. The emerging field of systems chemistry aims to study the currently under-exploited science of networks and complex mixtures. Through the chemistry of reversible chemical bonds, dynamic covalent chemistry (DCC), the creation of networks of compounds linked through a plethora of equilibrium processes, termed dynamic combinatorial libraries (DCLs), is possible. In this research, a DCL based on imine/nitrone exchange is designed and presented. The DCL is subsequently coupled to an irreversible chemical reaction based on molecular recognition and the dramatic responses observed within the DCL are discussed. The properties of the dynamic systems developed during the course of this research are then applied to the competition between emerging self-replicators in an attempt to demonstrate Darwinian Evolution. A thorough discussion of the inherent limitations placed upon a system by kinetic selection is presented in the context of self-replicators. Finally, non-linear chemical dynamics are discussed and successfully incorporated into a competitive replication scenario. The application of reaction diffusion fronts allows a self-replicating system to break the stranglehold of kinetic selection and exhibit its dominance over weaker competitors.
Type
Thesis, MPhil Master of Philosophy
Collections
  • Chemistry Theses
URI
http://hdl.handle.net/10023/3633

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter