Generating transformation semigroups using endomorphisms of preorders, graphs, and tolerances
View/ Open
Date
09/2010Keywords
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Let ΩΩ be the semigroup of all mappings of a countably infinite set Ω. If U and V are subsemigroups of ΩΩ, then we write U≈V if there exists a finite subset F of ΩΩ such that the subsemigroup generated by U and F equals that generated by V and F. The relative rank of U in ΩΩ is the least cardinality of a subset A of ΩΩ such that the union of U and A generates ΩΩ. In this paper we study the notions of relative rank and the equivalence ≈ for semigroups of endomorphisms of binary relations on Ω. The semigroups of endomorphisms of preorders, bipartite graphs, and tolerances on Ω are shown to lie in two equivalence classes under ≈. Moreover such semigroups have relative rank 0, 1, 2, or d in ΩΩ where d is the minimum cardinality of a dominating family for NN. We give examples of preorders, bipartite graphs, and tolerances on Ω where the relative ranks of their endomorphism semigroups in ΩΩ are 0, 1, 2, and d. We show that the endomorphism semigroups of graphs, in general, fall into at least four classes under ≈ and that there exist graphs where the relative rank of the endomorphism semigroup is 2ℵ0.
Citation
Mitchell , J D , Morayne , M , Peresse , Y H & Quick , M 2010 , ' Generating transformation semigroups using endomorphisms of preorders, graphs, and tolerances ' , Annals of Pure and Applied Logic , vol. 161 , no. 12 , pp. 1471-1485 . https://doi.org/10.1016/j.apal.2010.05.001
Publication
Annals of Pure and Applied Logic
Status
Peer reviewed
ISSN
0168-0072Type
Journal article
Rights
This is an author version of of this article. The published version Copyright © 2010 Elsevier B.V. is available at http://www.sciencedirect.com
Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.