Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorOjambati, Oluwafemi S.
dc.contributor.authorArnardottir, Kristin B.
dc.contributor.authorLovett, Brendon W.
dc.contributor.authorKeeling, Jonathan
dc.contributor.authorBaumberg, Jeremy J.
dc.date.accessioned2024-01-31T17:30:03Z
dc.date.available2024-01-31T17:30:03Z
dc.date.issued2024-01-19
dc.identifier297673666
dc.identifier3b2f07a7-07c5-4b17-9bfd-866dad64f25d
dc.identifier85182886894
dc.identifier.citationOjambati , O S , Arnardottir , K B , Lovett , B W , Keeling , J & Baumberg , J J 2024 , ' Few-emitter lasing in single ultra-small nanocavities ' , Nanophotonics . https://doi.org/10.1515/nanoph-2023-0706en
dc.identifier.issn2192-8614
dc.identifier.otherArXiv: http://arxiv.org/abs/2107.14304v1
dc.identifier.otherORCID: /0000-0002-4283-552X/work/152318586
dc.identifier.otherORCID: /0000-0001-5142-9585/work/152318708
dc.identifier.urihttps://hdl.handle.net/10023/29124
dc.descriptionFunding: We acknowledge support from EPSRC grants EP/G060649/1, EP/L027151/1, EP/G037221/1, EP/T014032/1, EPSRC NanoDTC, and from the European Research Council (ERC) under Horizon 2020 research and innovation programme PICOFORCE (Grant Agreement No. 883703), THOR (Grant Agreement No. 829067) and POSEIDON (Grant Agreement No. 861950). O.S.O acknowledges the support of a Rubicon fellowship from the Netherlands Organisation for Scientific Research.en
dc.description.abstractLasers are ubiquitous for information storage, processing, communications, sensing, biological research, and medical applications. To decrease their energy and materials usage, a key quest is to miniaturize lasers down to nanocavities. Obtaining the smallest mode volumes demands plasmonic nanocavities, but for these, gain comes from only single or few emitters. Until now, lasing in such devices was unobtainable due to low gain and high cavity losses. Here, we demonstrate a form of “few emitter lasing” in a plasmonic nanocavity approaching the single-molecule emitter regime. The few-emitter lasing transition significantly broadens, and depends on the number of molecules and their individual locations. We show this non-standard few-emitter lasing can be understood by developing a theoretical approach extending previous weak-coupling theories. Our work paves the way for developing nanolaser applications as well as fundamental studies at the limit of few emitters.
dc.format.extent8
dc.format.extent1775519
dc.language.isoeng
dc.relation.ispartofNanophotonicsen
dc.subjectNanocavityen
dc.subjectPlasmonic nanocavityen
dc.subjectNanolaseren
dc.subjectEmitteren
dc.subjectNonlinear light emissionen
dc.subjectQC Physicsen
dc.subjectDASen
dc.subject.lccQCen
dc.titleFew-emitter lasing in single ultra-small nanocavitiesen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Centre for Designer Quantum Materialsen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doi10.1515/nanoph-2023-0706
dc.description.statusPeer revieweden
dc.identifier.grantnumberEP/T014032/1en


This item appears in the following Collection(s)

Show simple item record