Show simple item record

Files in this item


Item metadata

dc.contributor.authorHusko, C.
dc.contributor.authorVo, T. D.
dc.contributor.authorCorcoran, B.
dc.contributor.authorLi, Juntao
dc.contributor.authorKrauss, Thomas Fraser
dc.contributor.authorEggleton, B. J.
dc.identifier.citationHusko , C , Vo , T D , Corcoran , B , Li , J , Krauss , T F & Eggleton , B J 2011 , ' Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide ' , Optics Express , vol. 19 , no. 21 , pp. 20681-20690 .
dc.identifier.otherPURE: 22771843
dc.identifier.otherPURE UUID: 34e86049-7802-49a2-8cba-c8702f80e252
dc.identifier.otherWOS: 000296065700092
dc.identifier.otherScopus: 80053951070
dc.description.abstractWe demonstrate an ultracompact, chip-based, all-optical exclusive-OR (XOR) logic gate via slow-light enhanced four-wave mixing (FWM) in a silicon photonic crystal waveguide (PhCWG). We achieve error-free operation (<10(-9)) for 40 Gbit/s differential phase-shift keying (DPSK) signals with a 2.8 dB power penalty. Slowing the light to v(g) = c/32 enables a FWM conversion efficiency, eta, of -30 dB for a 396 mu m device. The nonlinear FWM process is enhanced by 20 dB compared to a relatively fast mode of v(g) = c/5. The XOR operation requires approximate to 41 mW, corresponding to a switching energy of 1 pJ/bit. We compare the slow-light PhCWG device performance with experimentally demonstrated XOR DPSK logic gates in other platforms and discuss scaling the device operation to higher bit-rates. The ultracompact structure suggests the potential for device integration. (C) 2011 Optical Society of America
dc.relation.ispartofOptics Expressen
dc.rights(c) 2011 OSA. This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at http://www.opticsinfobase.orgen
dc.subjectPhotonic crystal waveguidesen
dc.subjectPhase modulationen
dc.subjectOptical logic devicesen
dc.subjectQC Physicsen
dc.titleUltracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguideen
dc.typeJournal articleen
dc.contributor.sponsorEuropean Commissionen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record