Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide
Date
10/10/2011Grant ID
EP/F001622/1
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We demonstrate an ultracompact, chip-based, all-optical exclusive-OR (XOR) logic gate via slow-light enhanced four-wave mixing (FWM) in a silicon photonic crystal waveguide (PhCWG). We achieve error-free operation (<10(-9)) for 40 Gbit/s differential phase-shift keying (DPSK) signals with a 2.8 dB power penalty. Slowing the light to v(g) = c/32 enables a FWM conversion efficiency, eta, of -30 dB for a 396 mu m device. The nonlinear FWM process is enhanced by 20 dB compared to a relatively fast mode of v(g) = c/5. The XOR operation requires approximate to 41 mW, corresponding to a switching energy of 1 pJ/bit. We compare the slow-light PhCWG device performance with experimentally demonstrated XOR DPSK logic gates in other platforms and discuss scaling the device operation to higher bit-rates. The ultracompact structure suggests the potential for device integration. (C) 2011 Optical Society of America
Citation
Husko , C , Vo , T D , Corcoran , B , Li , J , Krauss , T F & Eggleton , B J 2011 , ' Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide ' , Optics Express , vol. 19 , no. 21 , pp. 20681-20690 . https://doi.org/10.1364/OE.19.020681
Publication
Optics Express
Status
Peer reviewed
ISSN
1094-4087Type
Journal article
Rights
(c) 2011 OSA. This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at http://www.opticsinfobase.org
Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.