St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Solar-driven semi-conductor photocatalytic water treatment (TiO2, g-C3N4, and TiO2+g-C3N4) of cyanotoxins : proof-of-concept study with microcystin-LR

Thumbnail
View/Open
Pestana_2022_Chemosphere_Solar_driven_semi_conductor_CC.pdf (5.036Mb)
Date
01/01/2023
Author
Pestana, Carlos J
Hui, Jianing
Camacho-Muñoz, Dolores
Edwards, Christine
Robertson, Peter K J
Irvine, John T S
Lawton, Linda A
Funder
EPSRC
Grant ID
EP/P029280/1
Keywords
Water treatment
Visible light photocatalysis
Graphitic-carbon nitride
Titanium dioxide
In-reservoir treatment
QD Chemistry
NDAS
MCC
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Cyanobacteria and their toxins are a threat to drinking water safety as increasingly cyanobacterial blooms (mass occurrences) occur in lakes and reservoirs all over the world. Photocatalytic removal of cyanotoxins by solar light active catalysts is a promising way to purify water at relatively low cost compared to modifying existing infrastructure. We have established a facile and low-cost method to obtain TiO2 and g-C3N4 coated floating photocatalysts using recycled glass beads. g-C3N4 coated and TiO2+g-C3N4 co-coated beads were able to completely remove microcystin-LR in artificial fresh water under both natural and simulated solar light irradiation without agitation in less than 2 h. TiO2 coated beads achieved complete removal within 8 h of irradiation. TiO2+g-C3N4 beads were more effective than g-C3N4 beads as demonstrated by the increase reaction rate with reaction constants, 0.0485 min−1 compared to 0.0264 min−1 respectively, with TiO2 alone found to be considerably slower 0.0072 min−1. g-C3N4 based photocatalysts showed a similar degradation pathway to TiO2 based photocatalysts by attacking the C6–C7 double bond on the Adda side chain.
Citation
Pestana , C J , Hui , J , Camacho-Muñoz , D , Edwards , C , Robertson , P K J , Irvine , J T S & Lawton , L A 2023 , ' Solar-driven semi-conductor photocatalytic water treatment (TiO 2 , g-C 3 N 4 , and TiO 2 +g-C 3 N 4 ) of cyanotoxins : proof-of-concept study with microcystin-LR ' , Chemosphere , vol. 310 , 136828 . https://doi.org/10.1016/j.chemosphere.2022.136828
Publication
Chemosphere
Status
Peer reviewed
DOI
https://doi.org/10.1016/j.chemosphere.2022.136828
ISSN
1879-1298
Type
Journal article
Rights
Copyright © 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Description
Funding: We acknowledge the funding provided by the Engineering and Physical Sciences Research Council, UK (Global Challenge Research Fund: EP/P029280/1) towards carrying out this research. We also thank the support on electron microscopes from EPSRC Capital for Great Technologies (Grant EP/LP017008/1 and EP/R02375/1).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/26296

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter