St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

High brightness, highly directional organic light-emitting diodes as light sources for future light-amplifying prosthetics in the optogenetic management of vision loss

Thumbnail
View/Open
Hillebrandt_2022_AOM_High_Brightness_CC.pdf (1.814Mb)
Date
28/08/2022
Author
Hillebrandt, Sabina
Keum, Changmin
Deng, Yali
Chavas, Joël
Galle, Charlie
Hardin, Thomas
Galluppi, Francesco
Gather, Malte Christian
Keywords
Channelrhodopsins
Neurophotonics
Organic electronics
Photostimulation
Retinitis pigmentosa
QC Physics
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Optogenetic control of retinal cells transduced with light-sensitive channelrhodopsins can enable restoration of visual perception in patients with vision loss. However, a light intensity orders of magnitude higher than ambient light conditions is required to achieve robust cell activation. Relatively bulky wearable light amplifiers are currently used to deliver sufficient photon flux (>1016 photons/cm2/s in a ±10° emission cone) at a suitable wavelength (e.g., 600 nm for channelrhodopsin ChrimsonR). Here, ultrahigh brightness organic light-emitting diodes (OLEDs) with highly directional emission are developed, with the ultimate aim of providing high-resolution optogenetic control of thousands of retinal cells in parallel from a compact device. The orange-emitting phosphorescent OLEDs use doped charge transport layers, generate narrowband emission peaking at 600 nm, and achieve a luminance of 684 000 cd m–2 at 15 V forward bias. In addition, tandem-stack OLEDs with a luminance of 1 152 000 cd m–2 and doubled quantum efficiency are demonstrated, which greatly reduces electrical and thermal stress in these devices. At the photon flux required to trigger robust neuron firing in genetically modified retinal cells and when using heat sinking and realistic duty cycles (20% at 12.5 Hz), the tandem-stack OLEDs therefore show a greatly improved half-brightness lifetime of 800 h.
Citation
Hillebrandt , S , Keum , C , Deng , Y , Chavas , J , Galle , C , Hardin , T , Galluppi , F & Gather , M C 2022 , ' High brightness, highly directional organic light-emitting diodes as light sources for future light-amplifying prosthetics in the optogenetic management of vision loss ' , Advanced Optical Materials , vol. Early View , 2200877 . https://doi.org/10.1002/adom.202200877
Publication
Advanced Optical Materials
Status
Peer reviewed
DOI
https://doi.org/10.1002/adom.202200877
ISSN
2195-1071
Type
Journal article
Rights
Copyright © 2022 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Description
Funding: Engineering and Physical Sciences Research Council (Grant Number(s): EP/R010595/1). National Science Foundation (Grant Number(s): 1706207). Defense Sciences Office, DARPA (Grant Number(s): N66001-17-C-4012). Leverhulme Trust (Grant Number(s): RPG-2017-231). Alexander von Humboldt-Stiftung (Grant Number(s): Humboldt Professur). National Research Foundation of Korea (GrantNumber(s): 2017R1A6A3A03012331). China Sponsorship Council.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/25908

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter