Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorBanaji, Amlan
dc.contributor.authorRutar, Alex
dc.date.accessioned2022-08-18T14:30:03Z
dc.date.available2022-08-18T14:30:03Z
dc.date.issued2022-07-04
dc.identifier279308239
dc.identifierd08595da-7f7f-4236-978d-904ae037dcd6
dc.identifier85135531231
dc.identifier.citationBanaji , A & Rutar , A 2022 , ' Attainable forms of intermediate dimensions ' , Annales Academiae Scientiarum Fennicae-Mathematica , vol. 47 , no. 2 , pp. 939-960 . https://doi.org/10.54330/afm.120529en
dc.identifier.issn1239-629X
dc.identifier.otherORCID: /0000-0002-3727-0894/work/117567688
dc.identifier.otherORCID: /0000-0001-5173-992X/work/117567859
dc.identifier.urihttps://hdl.handle.net/10023/25860
dc.description.abstractThe intermediate dimensions are a family of dimensions which interpolate between the Hausdorff and box dimensions of sets. We prove a necessary and sufficient condition for a given function h(θ) to be realized as the intermediate dimensions of a bounded subset of Rd. This condition is a straightforward constraint on the Dini derivatives of h(θ), which we prove is sharp using a homogeneous Moran set construction.
dc.format.extent670879
dc.language.isoeng
dc.relation.ispartofAnnales Academiae Scientiarum Fennicae-Mathematicaen
dc.subjectHausdorff dimensionen
dc.subjectBox dimensionen
dc.subjectIntermediate dimensionsen
dc.subjectMoran seten
dc.subjectQA Mathematicsen
dc.subjectT-NDASen
dc.subjectNISen
dc.subjectNCADen
dc.subject.lccQAen
dc.titleAttainable forms of intermediate dimensionsen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. Pure Mathematicsen
dc.identifier.doi10.54330/afm.120529
dc.description.statusPeer revieweden
dc.identifier.urlhttps://arxiv.org/abs/2111.14678en


This item appears in the following Collection(s)

Show simple item record