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Attainable forms of intermediate dimensions

Amlan Banaji and Alex Rutar

Abstract. The intermediate dimensions are a family of dimensions which interpolate between
the Hausdorff and box dimensions of sets. We prove a necessary and sufficient condition for a
given function h(θ) to be realized as the intermediate dimensions of a bounded subset of Rd. This
condition is a straightforward constraint on the Dini derivatives of h(θ), which we prove is sharp
using a homogeneous Moran set construction.

Väliulottuvuuksien mahdolliset muodot

Tiivistelmä. Väliulottuvuudet muodostvat kokoelman ulottuvuuskäsitteitä Hausdorffin ulot-
tuvuuden ja laatikkoulottuvuuden välillä. Esitämme riittävän ja välttämättömän ehdon sille, että
annettu funktio h(θ) voi tuottaa avaruuden Rd rajoitetun osajoukon väliulottuvuuksien arvot. Tämä
ehto on funktion h(θ) Dinin derivaattoja koskeva suoraviivainen rajoitus, jonka osoitamme tarkaksi
homogeenisten Moranin joukkojen avulla.

1. Introduction

The Hausdorff and box dimensions of a set F ⊂ Rd are two widely studied notions
of dimension. We denote these dimensions by dimH F and dimB F respectively. The
box dimension is a coarse measurement of dimension, in the sense that it only takes
into account the size of the set at a fixed scale δ, as δ goes to zero. On the other hand,
the Hausdorff dimension takes into account all small scales simultaneously. When
the box and Hausdorff dimensions are equal, they indicate that the set has a large
amount of spatial regularity. For example, in [16], Shmerkin established Falconer’s
distance problem for subsets of the plane with equal Hausdorff and box dimensions,
whereas this conjecture is wide open in general.

However, the box and Hausdorff dimensions of sets can also differ: this is often the
case for natural “fractal” sets, such as self-affine sets. In order to better understand
this situation, the authors of [11] introduced the intermediate dimensions of the set
F . This is a family of dimensions, which we will denote by dimθ F for θ ∈ [0, 1],
which satisfy dim0 F = dimH F , dim1 F = dimB F , and which are continuous on
the interval (0, 1] (though not necessarily at 0). The intermediate dimensions are
defined by allowing an increasing amount of flexibility in the sizes of the covering
sets as θ tends to zero. Precise definitions are given in the next section. We remark
that intermediate dimensions are an example of dimension interpolation, of which
the Assouad spectrum is also an example. We refer the reader to [13] for a recent
survey of this topic.

In a very heuristic sense, the intermediate dimensions for θ > 0 behave more like
box dimensions than Hausdorff dimensions. Assuming the intermediate dimensions
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are continuous at zero, one would hope to obtain information about the Hausdorff
dimension of a set F in terms of the intermediate dimensions, which may a priori
be easier to bound. For example, in [6], as an application of general results on
intermediate dimensions of projections, the authors obtain novel bounds on the box
dimensions of projections of sets with intermediate dimensions continuous at zero.
Continuity at zero also provides information about the box dimensions of images of
sets under fractional Brownian motion [5].

Moreover, intermediate dimensions can distinguish bi-Lipschitz equivalence even
when other notions of dimension give no information [3]. In fact, quantitative infor-
mation about Hölder exponents can be obtained for any bi-Hölder map between sets
with distinct intermediate dimensions [5, Thm. 3.1]. We refer the reader to [10] for
a survey of some recent results concerning intermediate dimensions.

In this paper, we study the forms of the intermediate dimensions dimθ F for
θ ∈ [0, 1]. In general, the intermediate dimensions are known to satisfy certain
regularity constraints (see [11, Prop. 2.1], [10, Prop. 2.1], and [1, Prop. 3.8]). On the
other hand, intermediate dimensions have been computed for some specific families
of sets. For example, Bedford–McMullen carpets are a recent example of a natural
family of sets for which the intermediate dimensions exhibit interesting properties
[3]. Other sets which have been studied in the literature include infinitely generated
self-conformal sets [2] and elliptical polynomial spirals [6]. However, in general, no
progress has been made on determining sharpness of the general constraints on the
intermediate dimensions.

Our main result is to obtain a full characterization of possible intermediate di-
mensions for subsets of Rd.

Given a function f : R → R, we denote the (upper right) Dini derivative (see
(1.2)) of f at x by D+f(x). We then have the following result.

Theorem A. Let h : [0, 1] → [0, d] be any function. Then there exists a non-
empty bounded set F ⊂ Rd with dimθ F = h(θ) if and only if h is non-decreasing, is
continuous on (0, 1], and satisfies

(1.1) D+h(θ) ≤ h(θ)(d− h(θ))

dθ

for all θ ∈ (0, 1).

We see that the intermediate dimensions can have highly varied behaviour; such
behaviour has not been seen in any prior examples. In particular, without stronger
assumptions on the set F , very little can be said about the possible forms of the
intermediate dimensions.

For example, it follows directly from (1.1) that if f is any non-decreasing Lipschitz
function on [0, 1], there exists some constants a > 0, b ∈ R, and a set F ⊂ Rd such
that dimθ F = af(θ) + b for all θ ∈ [0, 1]. In particular, the following behaviours for
the intermediate dimensions are all possible:

(i) Constant on countably many disjoint closed intervals in [0, 1], and strictly
increasing otherwise.

(ii) Strictly concave, strictly convex, or linear and non-constant, on [0, 1].
(iii) Non-differentiable at each point in a dense subset E of (0, 1) with dimH E = 1

(in fact, any Gδσ set with Lebesgue measure zero [17]).

This resolves all remaining questions asked in Falconer’s survey [10].



Attainable forms of intermediate dimensions 941

We observe that the bound (1.1) is attained at all θ ∈ (0, 1) for the sets

Gp,d :=
{
x/ ‖x‖2 : x ∈ {np : n ∈ N}d

}
where d ∈ N and p > 0. These sets have intermediate dimensions given by dimθGp,d =
dθ/(p+ θ) for all θ ∈ [0, 1] [2, Prop. 3.8] (see also [11, Prop 3.1] for the case d = 1).

Results similar to the existence result in Theorem A have also been obtained for
the Assouad spectrum [14], though a full characterization for the Assouad spectrum
is not known. Both our results, and the results in that paper, use homogeneous
Moran sets as the basis of the construction.

1.1. Notation. We fix some d ∈ N and work in Rd, equipped with the max
norm. Given x ∈ Rd, we denote the jth coordinate of x by x(j). We write B(x, r) to
denote the open ball with radius r centred at x.

All sets F are non-empty bounded subsets of Rd. We write F to denote the
topological closure of F . We also denote by Nr(F ) the minimal number of sets with
diameter r required to cover F .

1.2. Statement and summary of main results. We begin with a precise
definition of the intermediate dimensions.

Definition 1.1. Let F ⊂ Rd. For 0 ≤ θ ≤ 1, the upper intermediate dimensions
are given by

dimθF = inf

{
s ≥ 0: (∀ε > 0) (∃δ0 > 0) (∀0 < δ ≤ δ0) (∃ a cover {Ui}∞i=1 of F ) s.t.

δ1/θ ≤ diamUi ≤ δ and
∞∑
i=1

(diamUi)
s ≤ ε

}
.

Similarly, the lower intermediate dimensions are given by

dimθF = inf

{
s ≥ 0: (∀ε > 0) (∀δ0 > 0) (∃ < δ ≤ δ0 and a cover {Ui}∞i=1 of F ) s.t.

δ1/θ ≤ diamUi ≤ δ and
∞∑
i=1

(diamUi)
s ≤ ε

}
.

Clearly dimθF ≤ dimθF . If dimθF = dimθF , we denote this common value by
dimθ F . We make the following basic observations:

• dimH F = dim0F = dim0F ,
• dimθF and dimθF are monotonically increasing in θ, and
• dim1F = dimB F and dim1F = dimB F .

We also recall the definitions of the Assouad and lower dimensions of the set F . As we
will see, these dimensions influence the possible forms of the intermediate dimensions
in a natural way.

Definition 1.2. Let F ⊂ Rd. The Assouad dimension of F is given by

dimA F = inf

{
α : (∃C > 0) (∀0 < r < R and x ∈ F ),

Nr(B(x,R) ∩ F ) ≤ C

(
R

r

)α}



942 Amlan Banaji and Alex Rutar

and, dually, the lower dimension of F is given by

dimL F = sup

{
λ : (∃C > 0) (∀0 < r < R ≤ diamF and x ∈ F ),

Nr(B(x,R) ∩ F ) ≥ C

(
R

r

)λ}
.

In general, we have dimL F ≤ dimH F ≤ dimB F ≤ dimB F ≤ dimA F . We refer
the reader to [9] and [12] for more details on these notions of fractal dimension.

Recall that the upper Dini derivative of a function f : R→ R at x is given by

(1.2) D+f(x) = lim sup
ε→0+

f(x+ ε)− f(x)

ε
.

We then define the following classes of functions.

Definition 1.3. Let 0 ≤ λ ≤ α ≤ d. If λ < α, we denote by H(λ, α) the set of
functions h : [0, 1]→ [λ, α] which satisfy the following constraints:

(i) h is non-decreasing,
(ii) h is continuous on (0, 1], and
(iii) for each θ ∈ (0, 1), we have

(1.3) D+h(θ) ≤ (h(θ)− λ)(α− h(θ))

(α− λ)θ
.

Otherwise, λ = α and we let H(λ, α) be the set consisting only of the constant
function h(θ) = α.

We note that in (1.3) one could take instead the lower Dini derivative and the
class of functions would remain unchanged (this follows from Corollary 2.3).

We now state our main result precisely.

Theorem B. Suppose F ⊂ Rd has dimL F = λ and dimA F = α. Then with
h(θ) = dimθF and h(θ) = dimθF , we have h, h ∈ H(λ, α), h ≤ h, and h(0) = h(0).
Conversely, if 0 ≤ λ ≤ α ≤ d and h, h ∈ H(λ, α) satisfy h ≤ h and h(0) = h(0),
then there exists a compact perfect set F ⊂ Rd such that dimL F = λ, dimA F = α,
dimθF = h(θ), and dimθF = h(θ) for all θ ∈ [0, 1].

The proof of this result is given in Theorem 2.6 and Corollary 3.13. This result
gives a full characterization of all possible forms of the upper and lower intermediate
dimensions of a bounded set F ⊂ Rd.

Constraint (1.3) generalizes all previously known bounds [1, 10, 11]. Note that
(1.3) also provides quantitative information about the Assouad and lower dimen-
sions in terms of the intermediate dimensions. This is in contrast to the box and
Hausdorff dimensions, which provide no more information about the Assouad and
lower dimensions beyond the usual order constraints. We can also view the bound
in (1.3) as (2θ)−1 times the harmonic mean of h(θ)− λ and α− h(θ). In particular,
if 0 ≤ λ′ ≤ λ ≤ α ≤ α′ ≤ d, then H(λ′, α′) ⊇ H(λ, α). Of course, by taking h = h
we can also ensure that the intermediate dimensions exist. Therefore, Theorem A
follows from Theorem B.

The proof of the bound (1.3) is given in Theorem 2.6. The strategy is essentially
as follows. Given ε > 0, we want to convert an optimal cover U for some set of scales
[δ1/θ, δ] into a cover for a smaller set of scales [δ′1/(θ+ε), δ′] ⊂ [δ1/θ, δ]. If U ∈ U has
large diameter, then we can replace it using sets with smaller diameter using the
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Assouad dimension; and we can cover the U ∈ U with small diameter with fewer sets
of larger diameter using the lower dimension. Then δ′ is chosen carefully to optimize
this process.

In order to establish a converse to this general bound, our main strategy is
construct sets which we call homogeneous Moran sets. These sets are analogous to
the 2d-corner Cantor sets in Rd, except we only require the subdivision ratios to
be equal within each stage in the construction, and not necessarily between stages.
The following nice property was essentially observed in [8]: the optimal covers for a
homogeneous Moran set can be taken to consist of sets with equal diameter. This
result is given in Lemma 2.10. A direct application of this result is a convenient
formula for the upper intermediate dimensions of these sets, given in Proposition 2.11.

Using this formula, in Lemma 3.4 and Lemma 3.7, we present a general strategy
to construct homogeneous Moran sets with upper intermediate dimensions given by
a certain infimum over a “sliding window” of a function g satisfying certain derivative
constraints. Then for any h(θ) satisfying the general bounds, in Theorem 3.9 we
construct a function satisfying the derivative constraints so that the corresponding
Moran set has upper intermediate dimensions given by the prescribed formula. This
establishes Theorem B for the upper intermediate dimensions.

Finally, in Theorem 3.11, we construct an inhomogeneous Moran set which, at a
fixed scale, looks like a finite union of homogeneous Moran sets each with prescribed
upper intermediate dimension h(θ). This process is done in such a way to ensure
that the intermediate dimensions exist. Then, taking a disjoint union of this set with
the set provided in Theorem 3.9, we complete the proof of Theorem B. The details
are provided in Corollary 3.13.

Heuristically, the covering strategy for Theorem 2.6 will be sharp when the rel-
ative covering numbers in the Assouad and lower dimensions are realized uniformly
on the entire set for a fixed scale. In some sense, this motivates the choice of homo-
geneous Moran sets, which have the maximum possible uniformity at a fixed scale.
The key observation is that inhomogeneity between scales is sufficient to obtain all
possible forms of the intermediate dimensions.

Acknowledgements. We thank Jonathan Fraser and Kenneth Falconer for helpful
comments on a draft version of this paper. We also thank Kathryn Hare for pointing
out some references on Assouad dimensions, and Boyuan Zhao for pointing out the
reference for Dini derivatives. Finally, we thank the anonymous referee for suggesting
reference [15], along with other useful comments.

2. Intermediate dimensions and general bounds

2.1. Some elementary results on Dini derivatives. We begin with some
standard results on Dini derivatives, which will be useful later in the paper. We refer
the reader to [4] for more details.

Definition 2.1. Let g : R+ → (0, 1) be a function. Then the upper right Dini
derivative is given by

D+g(x) = lim sup
ε→0+

g(x+ ε)− g(x)

ε
.

The lower right Dini derivative is denoted D+g, and the left Dini derivatives are
analogously denoted D−g and D−g.

We first make the following observation.
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Lemma 2.2. Let f and g be continuous functions on [a, b] with D+g ≤ D+f and
g(a) = f(a). Then g ≤ f .

Proof. Observe that D+(f − g) = D+f −D+g ≥ 0 so by [4, Cor. 11.4.2], f − g is
non-decreasing. But (f − g)(a) = 0 so g ≤ f . �

As an application, we obtain the following analogue of the mean value theorem.

Corollary 2.3. Let g be a continuous function on [a, b] and set s = g(b)−g(a)
b−a .

Then for any φ ∈ {D+g,D+g,D
−g,D−g},

(i) there exists x ∈ [a, b] such that φ(x) ≤ s, and
(ii) there exists x ∈ [a, b] such that φ(x) ≥ s.

Proof. We prove that there is some x such that D+g(x) ≥ s; the other cases
are similar. Without loss of generality, there is some x0 ∈ (a, b) such that g(x0) >
g(a) + s(x0 − a). Suppose for contradiction D+g(x) ≤ s for all x ∈ [a, x0]. By
Lemma 2.2, g(x) ≤ s(x − a) + g(a) for all x ∈ [a, x0], contradicting the choice of
x0. �

We now have the following elementary result.

Lemma 2.4. Let 0 ≤ λ < α ≤ d, let g : R+ → (λ, α) be continuous, and let
U ⊂ R+ be an open set. Then the following are equivalent:

(i) D+g(x) ∈ [λ− g(x), α− g(x)] for all x ∈ U .
(ii) D+g(x) ∈ [λ− g(x), α− g(x)] for all x ∈ U .
(iii) D−g(x) ∈ [λ− g(x), α− g(x)] for all x ∈ U .
(iv) D−g(x) ∈ [λ− g(x), α− g(x)] for all x ∈ U .
Proof. We will see that D+g(x) ∈ [λ− g(x), α− g(x)] for all x ∈ U implies that

D+g(x) ∈ [λ− g(x), α− g(x)] for all x ∈ U ; the remaining implications are similar.
Suppose for contradiction there is some x0 ∈ U such thatD+g(x0) /∈ [λ−g(x0), α−

g(x0)]. If D+g(x0) < λ− g(x0) this is immediate, so we assume D+g(x0) > α− g(x0).
Then there is some ε > 0 and x1 such that

g(x1)− g(x0)

x1 − x0

≥ α− g(x0) + ε,

[x0, x1] ⊂ U , and |g(y) − g(x0)| < ε/2 for all y ∈ [x0, x1]. Then by Corollary 2.3,
there is some y ∈ [x0, x1] such that

D+g(y) ≥ α− g(x0) + ε > α− g(y) +
ε

2

a contradiction. �

2.2. Bounding the intermediate dimensions. In this section, we provide a
general bound for the intermediate dimensions.

Definition 2.5. Given θ ∈ [0, 1], we say that a family of sets {Ui}∞i=1 is a (δ, θ)-
cover of F if F ⊆

⋃∞
i=1 Ui and δ

1/θ ≤ diamUi ≤ δ for each i ∈ N.
We take δ1/0 = 0. For convenience, given a cover U = {Ui}∞i=1, we define the

s-cost of the cover by Cs(U) :=
∑∞

i=1(diamUi)
s. With this terminology, we recall

that for 0 ≤ θ ≤ 1, the upper intermediate dimensions are given by

dimθF = inf {s ≥ 0: ∃δ0 > 0∀0 < δ ≤ δ0 ∃(δ, θ)-cover U of F s.t. Cs(U) ≤ 1}
and the lower intermediate dimensions are given by

dimθF = inf {s ≥ 0: ∀δ0 > 0 ∃0 < δ ≤ δ0 and (δ, θ)-cover U of F s.t. Cs(U) ≤ 1} .
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Of course, it suffices to show that Cs(U) ≤ M for some constant M not depending
on δ.

We now prove the following general bound for subsets of Rd. The proof is a
modification of Banaji’s bound [1, Prop. 3.8] to also take into account the lower
dimension of the set. The idea behind the proof is as follows. We will bound dimθ+εF
in terms of θ, dimθF , and the Assouad and lower dimensions of F . Given an optimal
cover for [δ1/θ, δ], we want to convert this to a cover for the smaller range of scales
[δβ/(θ+ε), δβ] ⊂ [δ1/θ, δ]. We then use the Assouad dimension to replace the sets
with large diameter with sets with smaller diameter (corresponding to the indices
in I3), and the lower dimension to optimally cover the sets with small diameter
(corresponding to the indices in I1). The remaining elements of the cover remain
essentially the same. The parameter β is chosen to optimize this process.

In order to obtain bounds corresponding to the lower dimension, we find it con-
venient to use lower dimensions of measures. If µ is a Borel probability measure, the
lower dimension of µ is given by

dimL µ = sup

{
λ : (∃C > 0) (∀0 < r < R ≤ diam(suppµ) and x ∈ suppµ),

µ(B(x,R))

µ(B(x, r))
≥ C

(
R

r

)λ}
.

We refer the reader to [12, Sec. 4.1] for more details.
We recall that a measure µ is doubling if there exists M ≥ 1, called the doubling

constant, such that µ(B(x, 2r)) ≤ Mµ(B(x, r)) for all x ∈ supp(µ) and r > 0. We
also recall that H(λ, α) is defined in Definition 1.3.

Theorem 2.6. Let F ⊂ Rd be any bounded set with λ = dimL F , α = dimA F .
Write h(θ) = dimθF and h(θ) = dimθF and let h ∈ {h, h}. Then, h ∈ H(λ, α). In
particular, if h(θ) ∈ {λ, α} for some 0 < θ ≤ 1, then h(θ) is constant on (0, 1].

Proof. We prove this for h(θ) = dimθF ; the case when h(θ) = dimθF is similar.
We also assume that λ < α, or else the result is trivial. First let θ ∈ (0, 1) and
ε ∈ (0, 1− θ), and let η, β be the unique solutions to the equations

α− h(θ)− β(α− h(θ)− η) = 0,
β

θ + ε
(h(θ) + η − λ) +

λ− h(θ)

θ
= 0.

One can verify that η and β are given by

η =
(h(θ)− λ)(α− h(θ))ε

(h(θ)− λ)ε+ (α− λ)θ
, β =

(h(θ)− λ)ε

(α− λ)θ
+ 1.

Now for s > h(θ), let s′ ∈ (h(θ), s), α′ > α and λ′ < λ satisfy

α′ − s− β(α′ − s− η) > 0,
β

θ + ε
(s+ η − λ′) +

λ′ − s′

θ
> 0.

For all sufficiently small δ ∈ (0, 1) there exists a (δ, θ)-cover {Ui}i∈I of F whose s′-cost
is less than 1. Define

I1 = {i ∈ I : diamUi < δ
β
θ+ε}

I2 = {i ∈ I : δ
β
θ+ε ≤ diamUi ≤ δβ/2}

I3 = {i ∈ I : diamUi > δβ/2}.
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There exists C > 0 such that for all 0 < r ≤ 2R, any set of diameter R contained
in F can be covered by bC(R/r)α

′c balls of diameter r. Then for k ∈ I3, let

Bk,1, . . . , Bk,bC((2 diamUk)/δβ)α′c

satisfy

diamBk,i = δβ and Sδβ/(θ+ε)(Uk) ∩ F ⊂
bC((2 diamUk)/δβ)α

′c⋃
i=1

Bk,i,

where Sr(U) denotes the r-neighbourhood of the set U . Let z1, . . . , zK be a maximal
4δβ/(θ+ε)-separated subset of

F \

( ⋃
i∈I2∪I3

S
δ
β
θ+ε

(Ui)

)
.

Set

U1 := {B(zm, 5δ
β
θ+ε ) : 1 ≤ m ≤ K}

U2 := {S
δ
β
θ+ε

(Uj) : j ∈ I2}

U3 :=
⋃
k∈I3

{
Bk,` : ` = 1, . . . , bC((2 diamUk)/δ

β)α
′c
}
.

Then for sufficiently small δ,

(2.1) U := U1 ∪ U2 ∪ U3

is a (δβ, θ + ε)-cover of F .
We now bound the (s+η)-cost of U independently of δ. First consider U1. By [7,

Thm. 2], there exists a doubling Borel probability measure µ with suppµ = F and
dimL µ ∈ (λ′, λ]. Let M be a doubling constant for µ. In particular, there is c > 0
such that if 0 < r < R ≤ diamF and x ∈ F then

µ(B(x,R))

µ(B(x, r))
≥ c

(
R

r

)λ′
.

For m ∈ {1, . . . , K} let

Jm := {i ∈ I1 : Ui ∩B(zm, δ
β/(θ+ε)) 6= ∅}.

If i ∈ Jm, fixing xi,m ∈ Ui ∩B(zm, δ
β/(θ+ε)),

µ(Ui) ≤ µ(B(xi,m, 2 diam(Ui))) ≤ c−1µ(B(xi,m, 2δ
β
θ+ε ))

(
δ

β
θ+ε

diamUi

)−λ′

≤ c−1µ(B(zm, 4δ
β
θ+ε ))

(
δ

β
θ+ε

diamUi

)−λ′
≤ c−1M2µ(B(zm, δ

β
θ+ε ))

(
δ

β
θ+ε

diamUi

)−λ′
.

Then

µ(B(zm, δ
β
θ+ε )) ≤

∑
i∈Jm

µ(Ui) ≤ c−1M2µ(B(zm, δ
β
θ+ε ))δ

−λ′β
θ+ε

∑
i∈Jm

(diamUi)
λ′ .
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Note that µ(B(zm, δ
β
θ+ε )) > 0 since suppµ = F . Moreover, if i ∈ I1, then Ui intersects

at most one of the balls of radius δβ/(θ+ε), so for sufficiently small δ,

Cs+η(U1) =
∑
i∈I1

diam(B(zi, 5δ
β
θ+ε ))s+η

=
K∑
m=1

(10δ
β
θ+ε )s+η ≤ 10s+ηc−1M2δ

β
θ+ε

(s+η−λ′)
∑
i∈I

(diamUi)
λ′

≤ 10s+ηc−1M2δ
β
θ+ε

(s+η−λ′)δ
λ′−s′
θ

∑
i∈I

(diamUi)
s′ ≤ 10s+ηc−1M2.

Next, consider U2:

Cs+η(U2) =
∑
j∈I2

diam(S
δ
β
θ+ε

(Uj))
s+η ≤

∑
j∈I2

(3 diamUi)
s+η ≤ 3s+η.

Finally, consider U3. Since diamUk ≤ δ,

Cs+η(U3) =
∑
k∈I3

bC((2 diamUk)/δβ)α
′c∑

`=1

(diamBk,`)
s+η ≤

∑
k∈I3

2α
′
C(diamUk)

α′δ−βα
′
δβ(s+η)

≤ 2α
′
C
∑
k∈I3

(diamUk)
sδα

′−s−βα′+β(s+η) ≤ 2α
′
C
∑
k∈I

(diamUk)
s ≤ 2α

′
C.

Thus Cs+η(U) ≤ 10s+ηc−1M2 + 3s+η + 2α
′
C which does not depend on δ.

Since s > h was arbitrary, we have shown that h(θ + ε) ≤ h(θ) + η. Dividing
through by ε gives

(2.2)
h(θ + ε)− h(θ)

ε
≤ (h(θ)− λ)(α− h(θ))

(h(θ)− λ)ε+ (α− λ)θ
.

Passing to the limit, we verify (1.3). That h is non-decreasing follows immediately
from the definition.

Moreover, (2.2) implies that h is continuous on (0, 1). To see that h(θ) is contin-
uous at 1, with minor modifications to the above proof we can take ε = 1− θ.

The particular cases h(θ) = λ or h(θ) = α for some θ ∈ (0, 1] follow directly from
(2.2). �

Remark 2.7. We also observe that the bound (2.2) for any ε ∈ [0, 1 − θ] can
be obtained directly by solving the differential equation corresponding to (1.3) and
applying Lemma 2.2 (using continuity of h(θ) on (0, 1]).

As an application, we can get a general lower bound for h(θ) in terms of the
lower, box, and Assouad dimensions of the set. Recall that dim1F = dimB F and
dim1F = dimB F .

Corollary 2.8. Let dimL F = λ and dimA F = α. For h(θ) = dimθF or h(θ) =
dimθF ,

h(θ) ≥ αθ(h(1)− λ) + λ(α− h(1))

θ(h(1)− λ) + (α− h(1))

for all θ ∈ (0, 1].

Proof. Substitute ε = 1 − θ into (2.2). Rearranging, we obtain the desired
result. �
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Figure 1. Plots of the bound in Corollary 2.8 for λ = 0.05, α = 0.52, and box dimensions
hi(1) = i/10 for i = 1, 2, . . . , 5.

Remark 2.9. Differentiating twice, one can verify that the general lower bound
in Corollary 2.8 is a concave function of θ. As dimB F approaches dimA F (resp.
dimL F ), the lower bound converges pointwise to the Assouad (resp. lower) dimension
for all θ > 0. The lower bound is always equal to dimL F for θ = 0. Plots of the
lower bound for particular parameters are given in Figure 1.

2.3. Intermediate dimensions of homogeneous Moran sets. We first
define the main object used in our construction, which we will call homogeneous
Moran sets. The construction is analogous to the usual 2d-corner Cantor set, except
that the subdivision ratios need not be the same at each level.

Fix I = {0, 1}d. We write I∗ =
⋃∞
n=0 In, and denote the word of length 0 by

∅. Suppose we are given a sequence r = (rn)∞n=1 with 0 < rn ≤ 1/2 for each n ∈ N.
Then for each n and i ∈ I, we define Sni : Rd → Rd by

Sni (x) := rnx+ bni

where bni ∈ Rd has

(bni )(j) =

{
0 : i(j) = 0,

1− rn : i(j) = 1.

Given σ = (i1, . . . , in) ∈ In, we write Sσ = S1
i1
◦ · · · ◦ Snin . Then set

Cn =
⋃
σ∈In

Sσ([0, 1]d) and C = C(r) :=
∞⋂
n=1

Cn.

We refer to the set C as a homogeneous Moran set. Note that Cn consists of 2dn

hypercubes each with diameter ρn := r1 · · · rn (with respect to the max norm).
Given δ > 0, let k = k(δ) be such that ρk ≤ δ < ρk−1. We then define

s(δ) = sr(δ) :=
k(δ) · d log 2

− log δ
.

One can interpret s(δ) as the best candidate for the “box dimension at scale δ”.
We now prove the following key covering lemma for intermediate dimensions.

This result essentially shows that the optimal covers for a homogeneous Moran set
can be taken to consist of balls all of the same diameter.
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Lemma 2.10. Let θ ∈ (0, 1] be arbitrary. Then for all δ > 0 sufficiently small,
with t = infφ∈[δ1/θ,δ] s(φ),

2−d ≤ inf
{
Ct(U) : U is a (δ, θ)-cover of C

}
≤ 1.

Proof. Let µ denote the uniform Bernoulli measure on C. Let U be a set
with δ1/θ ≤ diamU ≤ δ, and let k be such that ρk ≤ diamU < ρk−1. Note that
(diamU)s(diamU) = 2−kd. Then since U intersects at most 2d hypercubes in Ck,

µ(U) ≤ 2d · 2−kd = 2d · (diamU)s(diamU) ≤ 2d(diamU)t.

In particular, if U is an arbitrary (δ, θ)-cover of C,

1 = µ(C) ≤
∑
U∈U

µ(U) ≤ 2d
∑
U∈U

(diamU)t

so that Ct(U) ≥ 2−d.
Conversely, since s(δ) is continuous and increasing on each interval [ρk, ρk−1),

there is φ ∈ [δ1/θ, δ] such that t = s(φ) = k(φ)·d log 2
− log φ

. For each y = (j1, . . . , jd) ∈
{0, 1}d and σ ∈ I∗, let Eσ,φ(y) denote the hypercube with side length φ contained
in Sσ([0, 1]d), with edges aligned with the coordinate axes, and containing the point
Sσ(y). Since φ ≥ ρk(φ),

V :=
⋃

σ∈Ik(φ)−1

{Eσ,φ(y) : y ∈ {0, 1}d}

is a cover for Ck(φ), and therefore C, consisting of 2k(φ)·d hypercubes each with diam-
eter φ. Thus Ct(V) = 1. �

As a direct application, we have the following formula for the intermediate di-
mensions of C.

Proposition 2.11. For any θ ∈ (0, 1],

dimθC = lim sup
δ→0

(
inf

φ∈[δ1/θ,δ]
s(φ)

)
and

dimH C = dimθC = dimBC = lim inf
δ→0

s(δ).

3. Constructions with Moran sets

In this section, we prove the converse direction to Theorem B. In Section 3.1, we
will establish a general strategy for constructing homogeneous Moran sets. We first
introduce the following definition, which is in some sense analogous to the definition
of H(λ, α).

Definition 3.1. Given 0 ≤ λ < α ≤ d, we write G(λ, α) to denote the functions
g : R+ → (λ, α) which are continuous and satisfy

(3.1) D+g(x) ∈ [λ− g(x), α− g(x)]

for all x ∈ R+.

We will essentially show that for any function g ∈ G(0, d), there exists a ho-
mogeneous Moran set such that s(δ) ≈ g(log log(1/δ)). The transformation δ 7→
log log(1/δ) is useful since it converts the exponentiation map δ 7→ δ1/θ into addition
x 7→ x+ log(1/θ).
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In order to construct such a set, it suffices to define the corresponding contraction
ratios by “discretizing” the function g. In particular, in Lemma 3.4, we show that
there exists a sequence of contractions r such that the corresponding covering num-
bers sr(δ) are close to g(log log(1/δ)) in the precise sense given in (3.2). Of course,
depending on the choice of the function g, this bound may be impossible to attain
for small x. Thus we begin with a function g̃ and then translate it by some constant
amount. The contraction ratios are then used to define a corresponding Moran set
C, and (3.2) is useful to prove dimension results for the Moran set C.

Then, in Section 3.2 and Section 3.3, we use this technique to construct Moran
sets with the desired properties. In Theorem 3.9, we construct the function g de-
pending on some h ∈ H(λ, α) such that the corresponding Moran set has the desired
dimension formulas. This construction is also used in Theorem 3.11, where we use the
sequence of contraction ratios provided by Lemma 3.4 directly. Here, translations of
the function g are used to define an inhomogeneous Moran set which “locally” looks
like the Moran set C, but with a much greater amount of uniformity between scales
(so that the intermediate dimensions exist). Finally, these results are combined in
Corollary 3.13 to obtain a proof of Theorem B.

3.1. Constructing homogeneous Moran sets. We first describe a general
strategy to construct homogeneous Moran sets.

Lemma 3.2. Let 0 ≤ λ < α ≤ d and suppose g ∈ G(λ, α). Then for any
x0, x ∈ R+,

λ− (λ− g(x0)) exp(−x) ≤ g(x0 + x) ≤ α− (α− g(x0)) exp(−x).

Proof. This is a direct application of Lemma 2.2. �

Definition 3.3. Given a sequence of functions (fk)
∞
k=1 each defined on some

interval (0, ak], the concatenation of (fk)
∞
k=1 is the function f : (0,

∑∞
k=1 ak) → R

given as follows: for each x ∈ R+ with
∑k−1

j=0 aj < x ≤
∑k

j=0 aj where a0 = 0, we
define

f(x) = fk

(
x−

k−1∑
j=0

aj

)
.

Given a function g ∈ G(λ, α) and w ≥ 0, we define κw(g) ∈ G(λ, α) by the rule

κw(g)(x) =

{
g(x− w) : x > w,

limy→0+ g(y) : 0 < x ≤ w.

Note that κw translates the function g by some value w, and extends it to 0 by the
constant function.

The following lemma is stated to be useful in the proof of Theorem 3.11, where
many offsets of the same function will be required.

Lemma 3.4. Let 0 ≤ λ < α ≤ d and let g̃ ∈ G(λ, α). Suppose

lim sup
x→∞

(D+g̃(x) + g̃(x)) > 0.

Then there exists a sequence r := (rj)
∞
j=1 ⊂ (0, 1/2] and a constant w0 > 0 such that

g := κw0(g̃) satisfies

(3.2) |sr(exp(− exp(x)))− g(x)| ≤ d log(2) · exp(−x)

for all x ≥ w0.
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Proof. Since lim supx→∞(D+g̃(x) + g̃(x)) > 0, for every y > 0 there is some
minimal ψ(y) > y such that

(3.3) g̃(y) exp(−ψ(y) + y) = g̃(ψ(y))− d log(2) · exp(−ψ(y)).

Let g0 = limy→0+ g̃(y) and note that g0 ∈ (λ, α) by Lemma 3.2. Choose r1 such
that 2d log(2)

log(1/r1)
= g0 and let w0 = log log(1/r1). Now set x1 = w0 and, inductively, set

xk+1 = ψ(xk) for each k ∈ N. Let ρk = exp(− exp(xk)) denote the corresponding
scales, and set rk := ρk/ρk−1 for k ≥ 2. Observe that rk ∈ (0, 1) for all k. Thus for
0 < δ ≤ r1, if k is such that ρk < δ ≤ ρk−1, we set

s(δ) =
kd log 2

− log δ
.

We will prove by induction that for each k ∈ N, rk ∈ (0, 1/2], s(ρk) = g(xk), and

(3.4) g(x)− d log(2) exp(−x) ≤ s(exp(− exp(x))) ≤ g(x)

holds for all x ∈ [x1, xk]. From this, the result follows.
We first note that, by construction, r1 ∈ (0, 1/2] and s(ρ1) = g(x1). In general,

suppose the hypothesis holds for k ∈ N. By definition of ψ and the fact that g(xk) =
s(ρk),

g(xk+1) = s(ρk) exp(−xk+1 + xk) + d log(2) exp(−xk+1)

=
d(k + 1) log 2

exp(xk)
· exp(−xk+1) exp(xk) + d log(2) exp(−xk+1)

=
d(k + 2) log 2

exp(xk+1)
= s(ρk+1).

Moreover, by Lemma 3.2, g(x) ≥ g(xk) exp(−x + xk) for all x ≥ xk so that (3.4)
follows for x ∈ [xk, xk+1] by the minimality of xk+1 in the definition of ψ. Finally,
again by Lemma 3.2, g(xk+1) ≤ d− (d− g(xk)) exp(−xk+1 + xk). Substituting, this
implies that

d(k + 2) log 2

− log(ρk+1)
≤ d−

(
d− d(k + 1) log 2

− log(ρk)

)
· − log(ρk)

− log(ρk+1)

which after simplification gives that ρk+1 ≤ ρk/2, i.e. rk+1 ≤ 1/2. �

Remark 3.5. Observe that w0 depends only on the value limy→0 g̃(y) and the
ambient dimension d. In particular, we may take w0 to be any sufficiently large value.
These facts be will used in the proof of Theorem 3.9.

Remark 3.6. The bound (3.4) is optimal since s(δ) has discontinuities of size
d log 2

log(1/δ)
.

We now use the sequence r constructed in the previous lemma to define a homo-
geneous Moran set C, and prove that it satisfies the correct properties. Recall that
G is defined in Definition 3.1.

Lemma 3.7. Let g ∈ G(0, d) and suppose r = (rj)
∞
j=1 ⊂ (0, 1/2] satisfies

(3.5) |sr(exp(− exp(x)))− g(x)| ≤ d log(2) · exp(−x).

Then the corresponding homogeneous Moran set C = C(r) ⊂ Rd has:

(i) dimθC = lim sup
x→∞

(
inf

y∈[x,x+log(1/θ)]
g(y)

)
for θ ∈ (0, 1],
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(ii) dimθC = dimH C = lim inf
x→0

g(x) for θ ∈ (0, 1],
(iii) dimA C ≤ lim supx→∞(D+g(x) + g(x)), and
(iv) dimL C ≥ lim infx→∞(D+g(x) + g(x)).

Proof. We first observe that (i) and (ii) follow immediately from Proposition 2.11.
It remains to verify (iii) and (iv). By the same arguments as [15, Lem. 3.2], for any
K ∈ N

(3.6) dimA C = lim sup
n→∞

sup
k∈N,k≥K

nd log 2

log(ρk/ρk+n)
.

Write
α := lim sup

x→∞
(D+g(x) + g(x)),

and let ε > 0. For i ∈ N write xi := log log(1/ρi). Then there exists Mε > 0 such
that for all x ≥Mε we have D+g(x) + g(x) ≤ α+ ε. Let K ∈ N be large enough that
xK ≥Mε. For k ≥ K, define g : [xk,∞)→ R by

g(x) := α + ε− (α + ε− g(xk)) exp(xk − x)

Then g(xk) = g(xk), and

g′(x) + g(x) = α + ε ≥ D+g(x) + g(x)

for all x ≥ xk. It follows from Lemma 2.2 that g(x) ≤ g(x) for all x ≥ xk. By a direct
computation, using (3.5), and since exp(xi+1) ≥ exp(xi) + log 2 for all i, it follows
that for all n ∈ N

nd log 2

log(ρk/ρk+n)
=
s(exp(− exp(xk+n)))− s(exp(− exp(xk)))

1− exp(xk − xk+n)
+ s(exp(− exp(xk)))

≤ g(xk+n)− g(xk)

1− exp(xk − xk+n)
+ g(xk) +

2d

n

≤ g(xk+n)− g(xk)

1− exp(xk − xk+n)
+ g(xk) +

2d

n
= α + ε+

2d

n

as required.
Statement (iv) is given by an analogous argument, noting that the formula for

dimLC is given by replacing lim sup with lim inf and sup with inf in (3.6). �

Remark 3.8. In general, (iii) and (iv) will not be equalities since one would
require more robust regularity assumptions about the function g.

3.2. Prescribing the upper intermediate dimensions. Now, using the
general construction in the previous section, we show how to construct homogeneous
Moran sets with upper intermediate dimensions given by a function h : [0, 1]→ (0, d).
The main idea is to construct what we call bump functions, which have the property
that for any h(θ) there are exactly two points {x, x + log(1/θ))} which have value
h(θ). This ensures that the limit supremum of infima over windows [x, x+ log(1/θ)]
is exactly h(θ). See Figure 2 for a depiction of this construction.

Theorem 3.9. Let 0 ≤ λ ≤ α ≤ d and let h ∈ H(λ, α). Then there exists a
homogeneous Moran set C such that dimLC = λ, dimAC = α, dimθC = h(0), and

dimθC = h(θ)

for all θ ∈ [0, 1].
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Proof. We will assume that λ ≤ h(0) < h(θ) < α for all θ ∈ (0, 1]. The cases
where h(θ) = λ for all θ ∈ (0, 1] or h(θ) = α for all θ ∈ (0, 1] are similar, but easier.
The case h(θ) = h(0) for some θ > 0 can also be treated with minor modifications.

Let (εn)∞n=1 ⊂ (0, 1) converge monotonically to 0 and (γn)∞n=1 ⊂ (λ, α) converge
monotonically to h(0) such that γn ≤ h(εn+1). Note that if h(0) > λ we can take
γn = h(0) for all n. We will define what we refer to as bump functions fn and
appropriate connecting segments en. Graphical representations of the functions fn
and en are given in Figure 2 and Figure 3 respectively. Then we will define a function
g by concatenating the fn and en, and the corresponding Moran set C will be given
by Lemma 3.7.

The functions fn will ensure that dimθC = h(θ) for θ > 0, and the functions en
will ensure that g is continuous, dimH C = h(0), dimLC = λ, and dimAC = α.

Part 1. Construction of the bump functions fn : [0, log(1/εn)]→ [h(εn), h(1)] for
n ∈ N.

0 log(1/ϵn)x x∗ x+ log(1/θ)

h(1)

h(θ)

h(ϵn)

Figure 2. The construction of the bump function fn.

First set

x∗ := log

(
α− h(εn)

α− h(1)

)
and for x ∈ [0, x∗] define fn(x) = α−(α−h(εn)) exp(−x). Observe that fn(0) = h(εn),
fn(x∗) = h(1), and

(3.7) D−fn(x) = (α− h(εn)) exp(−x) = α− fn(x)

for x ∈ (0, x∗].
Now for x ∈ [0, x∗], if h(θ) = fn(x), we define fn(x + log(1/θ)) = h(θ). This is

well-defined since h is non-decreasing and continuous. In particular, fn(x) is non-
increasing and continuous on [x∗, log(1/εn)] with fn(log(1/εn)) = fn(0) = h(εn).

We now wish to bound D−fn(x+ log(1/θ)) for x ∈ (0, x∗]. First, note that

x = log

(
α− h(εn)

α− h(θ)

)
.

Then rearranging (1.3), we obtain

D+h(θ) ≤ (h(θ)− λ)

(
D+h(θ)

h(θ)− α
+

1

θ

)
.

Since h(θ) < α, D+h(θ) < α−h(θ)
θ

so that D+h(θ)
h(θ)−α + 1

θ
> 0. Therefore,

(3.8)
D+h(θ)

D+h(θ)
α−h(θ)

− 1
θ

≥ λ− h(θ) = λ− fn(x+ log(1/θ)).
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But x+ log(1/θ) is a smooth function of θ and h(θ), and h(θ) = fn(x+ log(1/θ)), so
since x decreases as θ increases,

D+h(θ) = D−fn(x+ log(1/θ)) ·
(
D+h(θ)

α− h(θ)
− 1

θ

)
which when combined with (3.8) yields D−fn(x + log(1/θ)) ≥ λ− fn(x + log(1/θ)).
Note that we have shown that

D−fn(x) ∈ [λ− fn(x), α− fn(x)]

for all x ∈ (0, log(1/εn)].

Part 2. Construction of the connector functions en : [0, wn] → [γn, h(εn)] where
wn is given in (3.9) for n ∈ N.

0 wnw∗

h(ϵn)

h(ϵn+1)

γn
h(0)

Figure 3. The construction of the connector function en.

Set

w∗ := log

(
h(εn)− λ
γn − λ

)
and for x ∈ [0, w∗] define en(x) = λ−(λ−h(εn)) exp(−x). Observe that en(w∗) = γn.
Let

(3.9) wn := w∗ + log

(
α− γn

α− h(εn+1)

)
and for x ∈ [w∗, wn] define en(x) = α− (α− γn) exp(−x+ w∗). Of course, en(wn) =
h(εn+1). It is clear that D−en(x) = λ−en(x) for x ∈ (0, w∗] and D−en(x) = α−en(x)
for all x ∈ (w∗, wn].

Part 3. Construction of g ∈ G(λ, α) and the corresponding Moran set C.

Let g̃ denote the concatenation of the sequence (f1, e1, f2, e2, . . .). By Lemma 2.4,
g̃ satisfies the hypotheses of Lemma 3.4, and get a corresponding function g and
sequence r. Note that g ∈ G(λ, α). Let C = C(r) denote the corresponding Moran
set.

That dimθC = h(θ) for θ ∈ (0, 1] follows by definition of the functions fn and the
fact that

lim
n→∞

(
sup

x∈[0,wn]

en(x)

)
≤ lim

θ→0
h(θ).

Moreover, Lemma 3.7 directly gives that dimH C = dimθC = h(0) for θ ∈ [0, 1],
λ ≤ dimLC, and dimA C ≤ α.

To see that dimA C ≥ α, by definition of the connector functions em, there is
some δ > 0 and a sequence (bm)∞m=1 →∞ such that D+g(x) + g(x) = α for all m ∈ N
and x ∈ [bm, bm + δ]. Since α > 0, for any n ∈ N, there exists some m such that for
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some k ∈ N we have bm ≤ log log(1/ρk) < log log(1/ρk+n) ≤ bm + δ. But then with
xi := log log(1/ρi),

nd log(2)

log(ρk/ρk+n)
=
s(exp(− exp(xk+n)))− s(exp(− exp(xk)))

1− exp(xk − xk+n)
+ s(exp(− exp(xk)))

≥ g(xk+n)− g(xk)

1− exp(xk − xk+n)
+ g(xk)−

2d

n
≥ α− 2d

n

since g(xk+n) = α− (α− g(xk)) exp(xk+n − xk).
An analogous argument gives that dimLC ≤ λ. �

3.3. Prescribing the intermediate dimensions. We can get more varied
behaviour for the lower intermediate dimensions by taking a finite union of Moran
sets. For example, the following proposition is straightforward to verify:

Proposition 3.10. Suppose gi ∈ G(0, d) for i = 1, . . . ,m have corresponding
sequences ri ⊂ (0, 1/2] satisfying

|gi(x)− sri(exp(− exp(x)))| ≤ d log(2) exp(−x).

LetM be a disjoint union of translations of the homogeneous Moran sets C(ri). Then
for θ ∈ (0, 1],

(1) dimθM = lim sup
x→∞

max
i=1,...,m

(
inf

y∈[x,x+log(1/θ)]
gi(y)

)
,

(2) dimθM = lim inf
x→∞

max
i=1,...,m

(
inf

y∈[x,x+log(1/θ)]
gi(y)

)
,

(3) dimH M = max
i=1,...,m

lim inf
x→∞

gi(x).

Suppose h(θ) satisfies h(ε) = h(0) for some ε > 0, and let g denote the infi-
nite concatenation of a bump function f : [0, log(1/ε)] → (0, d) constructed as in
Theorem 3.9. If C denotes the corresponding Moran set, then dimθC = h(θ).

Now supposeN is large, and define functions gi := κwi(g) where wi = (i−1)
N

log(1/ε)
for each i ∈ {1, . . . , N}. Write A = d log(1/ε). Then if x is arbitrary, since the gi are
Lipschitz continuous with constant d, there is some i depending on x such that

inf
y∈[x,x+log(1/θ)]

gi(y) ≥ h(θ)− A

N

for all large x. In particular, if M denotes the set given by Proposition 3.10, this
implies that

h(θ)− A

N
≤ dimθM ≤ dimθM = h(θ).

In other words, by taking a finite union of homogeneous Moran sets, we can ensure
that the upper and lower intermediate dimensions are arbitrarily close.

Motivated by this observation, we now construct a set such that the intermediate
dimensions exist and are given by a prescribed formula h(θ). At a fixed scale δ > 0,
the set M will look like a finite union of Moran sets each with the same upper
intermediate dimensions. As δ goes to zero, the resolution increases, so that the
intermediate dimensions exist. The construction here is mildly complicated by the
fact that the bumps fn and connectors en can have arbitrarily large support if h(θ) >
h(0) for all θ > 0.
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Theorem 3.11. Let 0 ≤ λ ≤ α ≤ d and let h ∈ H(λ, α). Then there exists a
compact perfect set M such that dimLM = λ, dimAM = α and

dimθ C = h(θ)

for all θ ∈ [0, 1].

Proof. We will assume that h(0) < h(θ) < α for all θ ∈ (0, 1]. The remaining
cases follow by similar, but slightly easier, arguments.

Part 1. Construction of the set M .

As in the proof of Theorem 3.9, fix non-increasing sequences (εn)∞n=1 and (γn)∞n=1

and construct corresponding bump functions (fn)∞n=1 defined on intervals [0, zn] and
connector functions (gn)∞n=1 defined on intervals [0, wn] where zn = log(1/εn) and wn
is defined as in (3.9). We may choose εn and γn so that wn + zn = 2n.

Let Ψ = {0, 1} × {0, 1, 2, 3} and let Ψ∗ =
⋃∞
n=0 Ψn. We first associate to each

η ∈ Ψ∗ a number a(η) ∈ [0,∞) as follows. Given k ∈ N and i = (u, v) ∈ Ψ, we define

ψ(k, i) = u2−k + v4k−1

and then for η = (i1, . . . , ik), we set

a(η) =
k∑

n=1

ψ(n, in).

Observe that a(Ψk) = {j2−k : j ∈ Z} ∩ [0, 4k).
For k ∈ N and i ∈ Ψ, we define ck,i(x) = h(εk) for all x ∈ [0, ψ(k, i)]. Now for

each η = (i1, . . . , in) ∈ Ψ∗, let g̃η denote the concatenation of the sequence

(f1, e1, c1,i1 , f2, e2, c2,i2 , . . . , fn, en, cn,in , fn+1, en+1, fn+2, en+2, . . .)

and set gη := κw0(g̃η), where w0 is guaranteed by Lemma 3.4. Note that it follows
from Remark 3.5 that w0 does not depend on the choice of η, and can be taken to
be arbitrarily large.

Thus there is a sequence r(η) := (rj(η))∞j=1 ⊂ (0, 1/2] such that for all x ≥ w0,

|sη(exp(− exp(x)))− gη(x)| ≤ d log(2) · exp(−x)

where sη := sr(η).
Let ∅ denote the word of length 0, and let ρk = r1(∅) · · · rk(∅). For k ≥ 0, let

yk = w0 +
∑k

i=1(wi + zi) = w0 + 2k+1 − 1. Then let nk be the maximal index such
that log log(1/ρnk) ≤ yk. Choosing w0 large, we may assume that nk ≥ 3k for all
k ∈ N.

Let I = {0, 1}d and let L : I3 → Ψ be given by L(i, j,k) = (i(1), j(1) + 2(k(1))).
For ` ∈ N, we let k` denote the maximal index such that nk` ≤ `. We then define a
map Λ: I∗ → Ψ∗ by

Λ(i1, . . . , i`) = (L(i1, i2, i3), L(i4, i5, i6), . . . , L(i3(k`−1)+1, i3(k`−1)+2, i3(k`−1)+3)).

This is well-defined since ` ≥ nk` ≥ 3k`.
We now construct our inhomogeneous Moran set M as follows. Given a word

σ = (i1, . . . , i`) ∈ I`, let η = Λ(σ). We then set Sσ = S1
i1,η
◦ · · · ◦ S`i`,η where

Sii,η(x) = ri(η) · x+ bii(η) with

bii(η)(j) =

{
0 : i(j) = 0,

1− ri(η) : i(j) = 1.
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We now set
M` =

⋃
σ∈I`

Sσ([0, 1]d).

Note that if σ is a prefix of τ , then Λ(σ) is a prefix of Λ(τ) and therefore Sσ([0, 1]d) ⊇
Sτ ([0, 1]d). Thus M0 ⊇M1 ⊇ · · · so that the set

M :=
∞⋂
`=0

M`

is non-empty.
Intuitively, at a fixed scale δ, M looks like a union of 8k homogeneous Moran

sets corresponding to the sequences r(η) for η ∈ Ψk. We can make this precise in the
following sense. For η ∈ Ψk, we define

Bk(η) = {(σ1, . . . , σk) ∈ I3k : L(σi) = ηi for each 1 ≤ i ≤ k},

Jη =
⋃

σ∈Bk(η)

Sσ([0, 1]d).

Let Cη := C(r(η)) denote the homogeneous Moran set corresponding to the function
gη. Let ` ∈ N satisfy

yk + a(η−) < log log(1/(r1(η) · · · r`(η))) ≤ yk+1 + a(η)

where η− ∈ Ψk−1 is the unique prefix of η. Since g∅(yk) = gη(yk + a(η−)), if σ ∈ I`,
then η is a prefix of Λ(σ). Moreover, if τ ∈ Ψ∗ is any word with η as a prefix,
gτ (x) = gη(x) for all x ≤ yk+1 + a(η). Thus for any such `, we have

(3.10) M` ∩ Jη = (Cη)` ∩ Jη.
But then if η′ is a prefix of η, r`(η′) = r`(η) for all ` such that

(3.11) log log(1/(r1(η) · · · r`(η))) ≤ yk+1 + a(η).

Thus (3.10) holds for any ` satisfying (3.11).
We also note that (Cη)` ∩ Jη consists of exactly 2d`−3k hypercubes with diameter

r1(η) · · · r`(η).

Part 2. Proof that dimθM = h(θ) for θ ∈ (0, 1].

Fix θ ∈ (0, 1]. We first show that dimθM ≤ h(θ). Let δ be sufficiently small so
that δ ≤ ρk0 where εk0 ≤ θ. Now let k be such that ρnk < δ1/θ. It now follows by the
same argument as Lemma 2.10 that for each η ∈ Ψk, with sη := infφ∈[δ1/θ,δ] sη(φ),

inf
{
Csη(U) : U is a (δ, θ)-cover of (Cη)`(η) ∩ Jη

}
≤ 8−k

where `(η) is minimal such that r1(η) · · · r`(η) ≤ δ1/θ. But `(η) satisfies (3.11) since
ρnk < δ1/θ, so thatM ⊆

⋃
η∈Ψk(Cη)`∩Jη. Therefore, sη ≤ h(θ)+d log(2) ·exp(−ynk).

This implies that dimθM ≤ h(θ).
Now fix ε > 0: we will show that dimθM ≥ h(θ)− (2 +d)ε. The various variables

in this proof are depicted in Figure 4.
Let k be such that 2−k ≤ ε. Let δ > 0 be small and let x := log log(1/δ). We

may assume that
(a) d log(2) exp(−x) ≤ ε,
(b) x ≥ yk, and
(c) x ≥ ym for some m with εm ≤ θ.
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ym ym+1ym + vm x x+ log(1/θ)

h(θ)

h(ϵm)
a(η)

2−m

gη

g∅

Figure 4. Choice of gη for the lower bound of dimθM .

For each m ∈ N, there is some vm such that fm(vm) = h(θ). Equivalently,
g∅(ym + vm) = h(θ). Let m be maximal such that ym + vm ≤ x. Since ym+1 + vm+1−
(ym + vm) ≤ 4m, there is some η0 ∈ Ψm such that |a(η0) − (x − ym − vm)| ≤ 2−k.
Then since D+g(x) ∈ [−d, d] for all x ∈ R+,

inf
φ∈[δ1/θ,δ]

sη(φ) ≥ inf
y∈[x,x+log(1/θ)]

gη(y)− ε ≥ h(θ)− (1 + d)ε.

Set s = h(θ) − (2 + d)ε. Again by the same argument as Lemma 2.10, since x +
log(1/θ) < ym+1 + vm+1 < ym+2, with η ∈ Ψm+1 satisfying gη0 = gη, we have

C · δ
−ε

8m
≤ inf {Cs(U) : U is a (δ, θ)-cover of M ∩ Jη}

≤ inf {Cs(U) : U is a (δ, θ)-cover of M}
for some constant C > 0 not depending on δ. But x ≥ ym ≥ 2m − 1, so

δ−ε

8m
≥
(
exp(exp(2m − 1))

)ε
8m

m→∞−−−→∞

as required.

Part 3. Proof that dimH M = h(0), dimLM = λ, and dimAM = α.

It is clear that dimH M ≥ h(0) since lim infδ→0 sη(δ) ≥ h(0) for all η ∈ Ψ∗.
Conversely, let ε > 0: we will show that dimH M ≤ h(0) + 2ε. Let n0 be sufficiently
large so that γn0 ≤ h(0) + ε. Then let δ > 0 be sufficiently small so that with
x = log log(1/δ), we have x ≥ yn0+1 and d log(2) · exp(−x) ≤ ε.

Let m be such that x < ym. For each η ∈ Ψm, by choice of n0, there exists some
x ≤ xη < ym+1 + a(η) such that

gη(xη) = γm ≤ h(0) + ε.

Then by the same argument as Lemma 2.10, since d log(2) · exp(−x) ≤ ε, with
s = h(0) + 2ε we have with `(η) minimal so that log log(1/ρ`(η)) ≥ xη,

inf
{
Cs(U) : U is a (δ, 0)-cover of (Cη)`(η) ∩ Jη

}
≤ 8−m.

Moreover, for x sufficiently large, we can ensure log log(1/ρ`(η)) ≤ ym+1 ≤ ym+1+a(η).
Thus M ⊆

⋃
η∈Ψm(Cη)`(η) ∩ Jη so that

inf {Cs(U) : U is a (δ, 0)-cover of M} ≤ 1.

But δ > 0 was arbitrary, so that dimHM ≤ h(0) + 2ε, as required.
Now we will see that dimA M = α; the proof that dimLM = λ follows similarly.

To see that dimA M ≥ α, observe that there is some δ > 0 such that D+g∅(x) +
g∅(x) = α for allm ∈ N and x ∈ [ym+1−δ, ym+1]. Let τ = {(0, 0), (0, 0, ), . . . , (0, 0)} ∈
Ψm and observe that g∅ = gτ . Then if log log(1/ρ`) ∈ [ym+1 − δ, ym+1], we have
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M` ∩ Jτ = C∅ ∩ Jτ . Thus dimAM ≥ α follows by the same computation from
Theorem 3.9.

Conversely, it suffices to show for any ε > 0 there is some a > 0, ` ∈ N so that
for any I ∈M` with diam I = R,

Nr(I ∩M) ≤ (R/r)α+ε

for any 0 < r ≤ aR. Let m, k be minimal so that log log(1/r) ≤ log log(1/ρm) ≤ yk.
First suppose ` ≥ 3k. Then there is a unique η ∈ Ψk such that I ⊂ Jη, so that

(Cη)j ∩ I ∩Mj = I ∩Mj

for all ` ≤ j ≤ m. Then since D+gη +gη ≤ α, the same computation as in Lemma 3.7
gives that

Nr(I ∩M) ≤ (2d)m−` ≤ (r`+1(η) · · · rm(η))−
(
α+ 2d

m−`

)
≤ (R/r)α+ 2d

m−` .

Otherwise, ` < 3k. Let η ∈ Ψk satisfy Jη ∩ I 6= ∅ and let σ ∈ I3k have
Sσ([0, 1]d) ⊆ I ∩ Jη. Again,

Nr(I ∩ (Cη)m) ≤ (2d)m−` ≤ (R/r)α+ 2d
m−`

so that

Nr(I ∩ (Cη)m ∩ Sσ([0, 1])d) ≤ (2d)m−3k = (2d)`−3k(2d)m−` ≤ (2d)`−3k(R/r)α+ 2d
m−` .

But I ∩ (Cη)m ∩ Sσ([0, 1]d) = I ∩Mm ∩ Sσ([0, 1]d) and there are precisely (2d)3k−`

words σ, so that
Nr(I ∩M) ≤ Nr(I ∩Mm) ≤ (R/r)α+ 2d

m−` .

Then choosing a sufficiently small so that 2d/(m− `) ≤ ε, we conclude in either case
that Nr(I ∩M) ≤ (R/r)α+ε, as required. �

Remark 3.12. It is clear from the construction that there are inhomogeneous
Moran sets for which any cover approximating the intermediate dimensions arbitrarily
closely would require an unbounded number of scales as δ tends to zero. This answers
a question of Falconer [10].

Using this construction, along with the preceding construction for the upper
intermediate dimensions, we can now simultaneously prescribe the upper and lower
intermediate dimensions.

Corollary 3.13. Let 0 ≤ λ ≤ α ≤ d and let h, h ∈ H(λ, α) satisfy h(0) = h(0)
and h ≤ h. Then there exists a compact perfect set M such that dimLM = λ,
dimA M = α and

dimθC = h(θ), dimθC = h(θ)

for all θ ∈ [0, 1].

Proof. Let E,F be disjoint compact perfect sets such that dimLE = dimL F = λ,
dimA E = dimA F = α, dimH E = dimH F = h(0) = h(0), and for θ ∈ (0, 1]

dimθF ≤ dimθ E = h(θ) ≤ h(θ) = dimθF.

For example, such a set E is provided by Theorem 3.11 and such a set F is provided
by Theorem 3.9. Let M = E ∪ F .

Then dimLM = min{dimLE, dimL F} = λ, dimA M = max{dimA E, dimA F} =
α,

h(θ) = dimθE ≤ dimθM ≤ max{dimθE, dimθF} = h(θ),
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and
dimθM = max{dimθE, dimθF} = h(θ)

for θ ∈ (0, 1]. Thus M satisfies the requirements. �
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