St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Eruptions from coronal bright points : a spectroscopic view by IRIS of a mini-filament eruption, QSL reconnection, and reconnection-driven outflows

Thumbnail
View/Open
Madjarska_2022_Eruptions_from_coronal_A_A_A45_CCBY.pdf (2.936Mb)
Date
07/04/2022
Author
Madjarska, Maria
Mackay, Duncan Hendry
Galsgaard, Klaus
Wiegelmann, Thomas
Xie, Haixia
Funder
Science & Technology Facilities Council
Grant ID
ST/S000402/1
Keywords
Sun: atmosphere
Sun: chromosphere
Sun: transition region
Sun: corona
Sun: activity
Sun: filaments
Sun: magnetic fields
Methods: observational, data analysis, numerical modelling
QB Astronomy
QC Physics
NDAS
MCC
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Context. Our study investigates a mini-filament eruption associated with cancelling magnetic fluxes. The eruption originates from a small-scale loop complex commonly known as a coronal bright point (CBP). The event is uniquely recorded in both the imaging and spectroscopic data taken with the Interface Region Imaging Spectrograph (IRIS). Aims. The investigation aims to gain a better understanding of the physical processes driving these ubiquitous small-scale eruptions. Methods. We analysed IRIS spectroscopic and slit-jaw imaging observations as well as images taken in the extreme-ultraviolet channels of the Atmospheric Imaging Assembly (AIA) and line-of-sight magnetic-field data from the Helioseismic Magnetic Imager (HMI) on board the Solar Dynamics Observatory. As the observations can only indicate the possible physical processes at play, we also employed a non-linear force-free field (NLFFF) relaxation approach based on the HMI magnetogram time series. This allowed us to further investigate the evolution of the magnetic-field structures involved in the eruption process. Results. We identified a strong small-scale brightening as a micro-flare in a CBP, recorded in emission from chromospheric to flaring plasmas. The mini-eruption is manifested via the ejection of hot (CBP loops) and cool (mini-filament) plasma recorded in both the imaging and spectroscopic data. The micro-flare is preceded by the appearance of an elongated bright feature in the IRIS slit-jaw 1400 Å images, located above the polarity inversion line. The micro-flare starts with an IRIS pixel size brightening and propagates bi-directionally along the elongated feature. We detected, in both the spectral and imaging IRIS data and AIA data, strong flows along and at the edges of the elongated feature; we believe that these represent reconnection outflows. Both edges of the elongated feature that wrap around the edges of the erupting MF evolve into a J-type shape, creating a sigmoid appearance. A quasi-separatrix layer (QSL) is identified in the vicinity of the polarity inversion line by computing the squashing factor, Q, in different horizontal planes of the NLFFF model.  Conclusions. This CBP spectro-imaging study provides further evidence that CBPs represent downscaled active regions and, as such, they may make a significant contribution to the mass and energy balance of the solar atmosphere. They are the sources of all range of typical active-region features, including magnetic reconnection along QSLs, (mini-)filament eruptions, (micro-)flaring, reconnection outflows, etc. The QSL reconnection site has the same spectral appearance as the so-called explosive events identified by strong blue- and red-shifted emission, thus providing an answer to an outstanding question regarding the true nature of this spectral phenomenon.
Citation
Madjarska , M , Mackay , D H , Galsgaard , K , Wiegelmann , T & Xie , H 2022 , ' Eruptions from coronal bright points : a spectroscopic view by IRIS of a mini-filament eruption, QSL reconnection, and reconnection-driven outflows ' , Astronomy & Astrophysics , vol. 660 , A45 . https://doi.org/10.1051/0004-6361/202142439
Publication
Astronomy & Astrophysics
Status
Peer reviewed
DOI
https://doi.org/10.1051/0004-6361/202142439
ISSN
0004-6361
Type
Journal article
Rights
Copyright M. S. Madjarska et al. 2022. Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Description
Funding: The authors thank very much the referee for the very important comments and suggestions. MM and TW acknowledge DFG-grant WI3211/8-1. D.H.M. would like to acknowledge STFC for support via the Consolidated Grant SMC1/YST037. Open Access funding provided by the Max Planck Society.
Collections
  • University of St Andrews Research
URL
https://arxiv.org/abs/2202.00370
URI
http://hdl.handle.net/10023/25495

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter