St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Red-shifted excitation and two-photon pumping of biointegrated GaInP/AlGaInP quantum well microlasers

Thumbnail
View/Open
Titze_2022_ACSP_Red_shifted_CC.pdf (3.946Mb)
Date
16/03/2022
Author
Titze, Vera M.
Caixeiro , Soraya
Di Falco, Andrea
Schubert, Marcel
Gather, Malte C.
Funder
European Research Council
EPSRC
The Royal Society
European Research Council
The Royal Society
Grant ID
640012
EP/P030017/1
RGF/R1/180070
819346
RGF/EA/180051
Keywords
Microlasers
Quantum wells
III-V semiconductors
Cell tracking
Two-photon excitation
QC Physics
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Biointegrated intracellular microlasers have emerged as an attractive and versatile tool in biophotonics. Different inorganic semiconductor materials have been used for the fabrication of such biocompatible microlasers, but often operate at visible wavelengths ill-suited for imaging through tissue. Here, we report on whispering gallery mode microdisk lasers made from a range of GaInP/AlGaInP multi-quantum well structures with compositions tailored to red-shifted excitation and emission. The selected semiconductor alloys show minimal toxicity and allow fabrication of lasers with stable single-mode emission in the NIR (675 – 720 nm) and sub-pJ thresholds. The microlasers operate in the first therapeutic window under direct excitation by a conventional diode laser and can also be pumped in the second therapeutic window using two-photon excitation at pulse energies compatible with standard multiphoton microscopy. Stable performance is observed under cell culturing conditions for five days without any device encapsulation. With their bio-optimized spectral characteristics, low lasing threshold and compatibility with two-photon pumping, AlGaInP-based microlasers are ideally suited for novel cell tagging and in vivo sensing applications.
Citation
Titze , V M , Caixeiro , S , Di Falco , A , Schubert , M & Gather , M C 2022 , ' Red-shifted excitation and two-photon pumping of biointegrated GaInP/AlGaInP quantum well microlasers ' , ACS Photonics , vol. 9 , no. 3 , pp. 952-960 . https://doi.org/10.1021/acsphotonics.1c01807
Publication
ACS Photonics
Status
Peer reviewed
DOI
https://doi.org/10.1021/acsphotonics.1c01807
ISSN
2330-4022
Type
Journal article
Rights
Copyright © 2022 American Chemical Society. Open Access article licensed under Creative Commons Attribution CC-BY 4.0.
Description
This work received financial support from the Leverhulme Trust (RPG-2017-231), European Union’s Horizon 2020 Framework Programme (FP/2014-2020)/ERC grant agreement no. 640012 (ABLASE), EPSRC (EP/P030017/1), and the Humboldt Foundation (Alexander von Humboldt professorship). MS acknowledges funding by the Royal Society (Dorothy Hodgkin Fellowship, DH160102; Research Grant, RGF\R1\180070; Enhancement Award, RGF\EA\180051). ADF acknowledges support from European Research Council (ERC) under the European Union Horizon 2020 research and innovation program (Grant Agreement No. 819346).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/25277

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter