St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Probing multiscale factors affecting the reactivity of nanoparticle-bound molecules

Thumbnail
View/Open
Mati_et_al_nn_2020_09190u.R2_Manuscript.pdf (1.092Mb)
Date
03/05/2021
Author
Mati, Ioulia
Edwards, William
Marson, Domenico
Howe, Edward James
Stinson, Scott
Posocco, Paola
Kay, Euan R.
Funder
The Leverhulme Trust
EPSRC
EPSRC
Grant ID
ORPG-3419
EP/K016342/1
EP/L016419/1
Keywords
Self-assembled monolayers
Reaction kinetics
Dynamic covalent chemistry
Gold nanoparticles
Dissipative particle dynamics
Nanoconfined chemistry
Molecular dynamics
QD Chemistry
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The structures and physicochemical properties of surface-stabilizing molecules play a critical role in defining the properties, interactions, and functionality of hybrid nanomaterials such as monolayer-stabilized nanoparticles. Concurrently, the distinct surface-bound interfacial environment imposes very specific conditions on molecular reactivity and behavior in this setting. Our ability to probe hybrid nanoscale systems experimentally remains limited, yet understanding the consequences of surface confinement on molecular reactivity is crucial for enabling predictive nanoparticle synthon approaches for postsynthesis engineering of nanoparticle surface chemistry and construction of devices and materials from nanoparticle components. Here, we have undertaken an integrated experimental and computational study of the reaction kinetics for nanoparticle-bound hydrazones, which provide a prototypical platform for understanding chemical reactivity in a nanoconfined setting. Systematic variation of just one molecular-scale structural parameter—the distance between reactive site and nanoparticle surface—showed that the surface-bound reactivity is influenced by multiscale effects. Nanoparticle-bound reactions were tracked in situ using 19F NMR spectroscopy, allowing direct comparison to the reactions of analogous substrates in bulk solution. The surface-confined reactions proceed more slowly than their solution-phase counterparts, and kinetic inhibition becomes more significant for reactive sites positioned closer to the nanoparticle surface. Molecular dynamics simulations allowed us to identify distinct supramolecular architectures and unexpected dynamic features of the surface-bound molecules that underpin the experimentally observed trends in reactivity. This study allows us to draw general conclusions regarding interlinked structural and dynamical features across several length scales that influence interfacial reactivity in monolayer-confined environments.
Citation
Mati , I , Edwards , W , Marson , D , Howe , E J , Stinson , S , Posocco , P & Kay , E R 2021 , ' Probing multiscale factors affecting the reactivity of nanoparticle-bound molecules ' , ACS Nano , vol. Articles ASAP . https://doi.org/10.1021/acsnano.0c09190
Publication
ACS Nano
Status
Peer reviewed
DOI
https://doi.org/10.1021/acsnano.0c09190
ISSN
1936-0851
Type
Journal article
Rights
Copyright © 2021 American Chemical Society. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1021/acsnano.0c09190
Description
I. K. M., W. E., E. J. H, S. S. and E. R. K. are grateful for funding from the Leverhulme Trust [RPG-2015-042], the Engineering and Physical Sciences Research Council [EP/K016342/1], the University of St Andrews, and the EPSRC Centre for Doctoral Training in Critical Resource Catalysis (CRITICAT) [Ph.D. studentship to SS: EP/L016419/1]. D. M. and P.P thank the Italian Ministry of University Research (MIUR) for funding [RBSI14PBC6].
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/25267

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter