St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

A novel 3D atomistic-continuum cancer invasion model : in silico simulations of an in vitro organotypic invasion assay

Thumbnail
View/Open
elsarticle_template_compressed.pdf (739.2Kb)
Date
07/08/2021
Author
Franssen, Linnea C.
Sfakianakis, Nikolaos
Chaplain, Mark Andrew Joseph
Keywords
Cancer invasion
Organotypic assay
Atomistic-continuum model
QA Mathematics
QH301 Biology
RC0254 Neoplasms. Tumors. Oncology (including Cancer)
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We develop a three-dimensional genuinely hybrid atomistic-continuum model that describes the invasive growth dynamics of individual cancer cells in tissue. The framework explicitly accounts for phenotypic variation by distinguishing between cancer cells of an epithelial-like and a mesenchymal-like phenotype. It also describes mutations between these cell phenotypes in the form of epithelial-mesenchymal transition (EMT) and its reverse process mesenchymal-epithelial transition (MET). The proposed model consists of a hybrid system of partial and stochastic differential equations that describe the evolution of epithelial-like and mesenchymal-like cancer cells, respectively, under the consideration of matrix-degrading enzyme concentrations and the extracellular matrix density. With the help of inverse parameter estimation and a sensitivity analysis, this three-dimensional model is then calibrated to an in vitro organotypic invasion assay experiment of oral squamous cell carcinoma cells.
Citation
Franssen , L C , Sfakianakis , N & Chaplain , M A J 2021 , ' A novel 3D atomistic-continuum cancer invasion model : in silico simulations of an in vitro organotypic invasion assay ' , Journal of Theoretical Biology , vol. 522 , 110677 . https://doi.org/10.1016/j.jtbi.2021.110677
Publication
Journal of Theoretical Biology
Status
Peer reviewed
DOI
https://doi.org/10.1016/j.jtbi.2021.110677
ISSN
0022-5193
Type
Journal article
Rights
Copyright © 2021 Published by Elsevier Ltd. All rights reserved. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1016/j.jtbi.2021.110677.
Description
Copyright © 2021 Elsevier Ltd. All rights reserved.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/25111

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter