St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Kennicutt-Schmidt law and the main sequence of galaxies in Newtonian and Milgromian dynamics

Thumbnail
View/Open
Zonoozi_2021_MNRAS_Kennicutt_Schidmt_law_VoR.pdf (3.689Mb)
Date
10/2021
Author
Zonoozi, Akram Hasani
Lieberz, Patrick
Banik, Indranil
Haghi, Hosein
Kroupa, Pavel
Keywords
Galaxies: ISM
Galaxies: Star formation
Galaxies: Statistics
Galaxy: Disc
Gravitation
Instabilities
QB Astronomy
QC Physics
Space and Planetary Science
Astronomy and Astrophysics
T-DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The Kennicutt-Schmidt law is an empirical relation between the star formation rate surface density (ΣSFR) and the gas surface density (Σgas) in disc galaxies. The relation has a power-law form ΣSFR ∝ Σgasn. Assuming that star formation results from gravitational collapse of the interstellar medium, ΣSFR can be determined by dividing Σgas by the local free-fall time tff. The formulation of tff yields the relation between ΣSFR and Σgas, assuming that a constant fraction (ΣSFE) of gas is converted into stars every tff. This is done here for the first time using Milgromian dynamics (MOND). Using linear stability analysis of a uniformly rotating thin disc, it is possible to determine the size of a collapsing perturbation within it. This lets us evaluate the sizes and masses of clouds (and their tff) as a function of Σgas and the rotation curve. We analytically derive the relation ΣSFR ∝ Σgasn both in Newtonian and Milgromian dynamics, finding that n = 1.4. The difference between the two cases is a change only to the constant pre-factor, resulting in increased ΣSFR of up to 25 per cent using MOND in the central regions of dwarf galaxies. Due to the enhanced role of disc self-gravity, star formation extends out to larger galactocentric radii than in Newtonian gravity, with the clouds being larger. In MOND, a nearly exact representation of the present-day main sequence of galaxies is obtained if ϵSFE = constant ≈ 1.1 per cent. We also show that empirically found correction terms to the Kennicutt-Schmidt law are included in the here presented relations. Furthermore, we determine that if star formation is possible, then the temperature only affects ΣSFR by at most a factor of √2.
Citation
Zonoozi , A H , Lieberz , P , Banik , I , Haghi , H & Kroupa , P 2021 , ' The Kennicutt-Schmidt law and the main sequence of galaxies in Newtonian and Milgromian dynamics ' , Monthly Notices of the Royal Astronomical Society , vol. 506 , no. 4 , pp. 5468-5478 . https://doi.org/10.1093/mnras/stab2068
Publication
Monthly Notices of the Royal Astronomical Society
Status
Peer reviewed
DOI
https://doi.org/10.1093/mnras/stab2068
ISSN
0035-8711
Type
Journal article
Rights
Copyright © 2021 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the final published version of the work, which was originally published at https://doi.org/10.1093/mnras/stab2068
Description
Funding: Supported in part by Fondazione Cassa di Risparmio in Bologna, Project: “Biologia e clinica delle gravi insufficienze d’organo”, year 1999.
Collections
  • University of St Andrews Research
URL
https://arxiv.org/abs/2109.00497
URI
http://hdl.handle.net/10023/24682

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Related items

Showing items related by title, author, creator and subject.

  • SDSS-IV MaNGA: How the stellar populations of passive central galaxies depend on stellar and halo mass 

    Oyarzún, Grecco A.; Bundy, Kevin; Westfall, Kyle B.; Tinker, Jeremy L.; Belfiore, Francesco; Argudo-Fernández, Maria; Zheng, Zheng; Conroy, Charlie; Masters, Karen L.; Wake, David; Law, David R.; McDermid, Richard M.; Aragón-Salamanca, Alfonso; Parikh, Taniya; Yan, Renbin; Bershady, Matthew; Sánchez, Sebastián F.; Andrews, Brett H.; Fernández-Trincado, José G.; Lane, Richard R.; Bizyaev, D.; Boardman, Nicholas Fraser; Lacerna, Ivan; Brownstein, J. R.; Drory, Niv; Zhang, Kai (2022-07-06) - Journal article
    We analyze spatially resolved and co-added SDSS-IV MaNGA spectra with signal-to-noise ratio ∼100 from 2200 passive central galaxies (z ∼ 0.05) to understand how central galaxy assembly depends on stellar mass (M*) and halo ...
  • Secular-and merger-built bulges in barred galaxies 

    Mendez Abreu, Jairo; Debattista, V. P.; Corsini, E. M.; Aguerri, J. A. L. (2014-12) - Journal article
    Context. Historically, galaxy bulges were thought to be single-component objects at the center of galaxies. However, this picture is now questioned since different bulge types with different formation paths, namely classical ...
  • Galaxy And Mass Assembly (GAMA) : galaxy close pairs, mergers and the future fate of stellar mass 

    Robotham, A. S. G.; Driver, S. P.; Davies, L. J. M.; Hopkins, A. M.; Baldry, I. K.; Agius, N. K.; Bauer, A. E.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cluver, M.; De Propris, R.; Drinkwater, M. J.; Holwerda, B. W.; Kelvin, L. S.; Lara-Lopez, M. A.; Liske, J.; Lopez-Sanchez, A. R.; Loveday, J.; Mahajan, S.; McNaught-Roberts, T.; Moffett, A.; Norberg, P.; Obreschkow, D.; Owers, M. S.; Penny, S. J.; Pimbblet, K.; Prescott, M.; Taylor, E. N.; van Kampen, E.; Wilkins, S. M. (2014-11-11) - Journal article
    We use a highly complete subset of the Galaxy And Mass Assembly II (GAMA-II) redshift sample to fully describe the stellar mass dependence of close pairs and mergers between 10(8) and 10(12)M(circle dot). Using the analytic ...
Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter