St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Planar semiconductor membranes with brightness-enhanced embedded quantum dots via electron beam induced deposition of 3D nanostructures : implications for solid state lighting

Thumbnail
View/Open
Varo_2020_Planar_semiconductor_membranes_ACSApplNanoMat_AAM_SI.pdf (1.286Mb)
Varo_2020_Planar_semiconductor_membranes_ACSApplNanoMat_AAM.pdf (2.024Mb)
Date
24/12/2020
Author
Varo, S
Li, Xin
Juska, G
Jahromi, I
Gocalinska, A
Di Falco, Andrea
Pelucchi, E
Funder
EPSRC
European Research Council
Grant ID
ep/l017008/1
819346
Keywords
Quantum dots
Electron beam induced disposition
Microlenses
Additive manufacturing
Photonic trimming
QC Physics
TK Electrical engineering. Electronics Nuclear engineering
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The engineering of the surrounding photonic environment is one of the most successful approaches routinely used to increase light extraction efficiency and tune the properties of solid state sources of quantum light. However, results achieved so far have been hampered by the lack of a technology that allows for the straightforward fabrication of large scale 3D nano- and microfeatures, with very high resolution and sufficient flexibility in terms of available materials. In this paper we show that Electron Beam Induced Deposition can be a very promising approach to solve this issue, asexemplified by the fabrication of Pt and SiO2 nanofeatures on a membrane containing ordered arrays of site-controlled pyramidal quantum dots. Micro-photoluminescence has been used to compare the emission of the dots before and after the deposition of the structures, remarkably showing both a significant increase in the light extraction efficiency and no degradation of the spectral quality, implying that negligible damage has been caused to the emitter due to the deposition process. This paves the way for novel post-growth processing strategies for epitaxial quantum dots used in both quantum information technologies and lighting applications.
Citation
Varo , S , Li , X , Juska , G , Jahromi , I , Gocalinska , A , Di Falco , A & Pelucchi , E 2020 , ' Planar semiconductor membranes with brightness-enhanced embedded quantum dots via electron beam induced deposition of 3D nanostructures : implications for solid state lighting ' , ACS Applied Nano Materials , vol. 3 , no. 12 , pp. 12401–12407 . https://doi.org/10.1021/acsanm.0c02969
Publication
ACS Applied Nano Materials
Status
Peer reviewed
DOI
https://doi.org/10.1021/acsanm.0c02969
ISSN
2574-0970
Type
Journal article
Rights
Copyright © 2020 American Chemical Society. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1021/acsanm.0c02969.
Description
Funding: This research was supported by Science Foundation Ireland under Grant Nos. 15/IA/2864, and 12/RC/2276_P2. ADF acknowledges support from EPSRC (EP/L017008/1) and ERC (Grant No. 819346).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/24500

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter