St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Extending density surface models to include multiple and double-observer survey data

Thumbnail
View/Open
Miller_2021_PeerJ_Extending_density_CC.pdf (4.459Mb)
Date
02/09/2021
Author
Miller, David L.
Fifield, David
Wakefield, Ewan
Sigourney, Douglas B.
Keywords
Density surface model
Distance sampling
Generalized additive model
Spatial modelling
Variance propagation
Abundance estimation
QA Mathematics
HA Statistics
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Spatial models of density and abundance are widely used in both ecological research (e.g., to study habitat use) and wildlife management (e.g., for population monitoring and environmental impact assessment). Increasingly, modellers are tasked with integrating data from multiple sources, collected via different observation processes. Distance sampling is an efficient and widely used survey and analysis technique. Within this framework, observation processes are modelled via detection functions. We seek to take multiple data sources and fit them in a single spatial model. Density surface models (DSMs) are a two-stage approach: first accounting for detectability via distance sampling methods, then modelling distribution via a generalized additive model. However, current software and theory does not address the issue of multiple data sources. We extend the DSM approach to accommodate data from multiple surveys, collected via conventional distance sampling, double-observer distance sampling (used to account for incomplete detection at zero distance) and strip transects. Variance propagation ensures that uncertainty is correctly accounted for in final estimates of abundance. Methods described here are implemented in the dsm R package. We briefly analyse two datasets to illustrate these new developments. Our new methodology enables data from multiple distance sampling surveys of different types to be treated in a single spatial model, enabling more robust abundance estimation, potentially over wider geographical or temporal domains.
Citation
Miller , D L , Fifield , D , Wakefield , E & Sigourney , D B 2021 , ' Extending density surface models to include multiple and double-observer survey data ' , PeerJ , vol. 9 , e12113 . https://doi.org/10.7717/peerj.12113
Publication
PeerJ
Status
Peer reviewed
DOI
https://doi.org/10.7717/peerj.12113
ISSN
2167-8359
Type
Journal article
Rights
This is an open access article, free of all copyright, made available under the Creative Commons Public Domain Dedication. This work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
Description
David L. Miller was funded by OPNAV N45 and the SURTASS LFA Settlement Agreement, being managed by the U.S. Navy’s Living Marine Resources program under Contract No. N39430-17-C-1982, collaboration between Douglas B. Sigourney and David L. Miller was also facilitated by the DenMod working group (https://synergy.st-andrews.ac.uk/denmod/) funded under the same agreement. The survey that the fin whale data originate from was funded through two inter-agency agreements with the National Marine Fisheries Service: inter-agency agreement number M14PG00005 with the US Department of the Interior, Bureau of Ocean Energy Management, Environmental Studies Program, Washington, DC and inter-agency agreement number NEC-16-011-01-FY18 with the US Navy. The survey that the fulmar data originate from was funded by the UK Natural Environmental Research Council (NERC) grant NE/M017990/1.
Collections
  • University of St Andrews Research
URL
https://peerj.com/articles/12113/#supplementary-material
URI
http://hdl.handle.net/10023/23895

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter