Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorLee, JinGoo
dc.contributor.authorNaden, Aaron Benjamin
dc.contributor.authorSavaniu, Cristian Daniel
dc.contributor.authorConnor, Paul Alexander
dc.contributor.authorPayne, Julia Louise
dc.contributor.authorSkelton, Jonathan
dc.contributor.authorGibbs, Alexandra
dc.contributor.authorHui, Jianing
dc.contributor.authorParker, Stephen
dc.contributor.authorIrvine, John Thomas Sirr
dc.date.accessioned2021-08-26T15:30:12Z
dc.date.available2021-08-26T15:30:12Z
dc.date.issued2021-10-07
dc.identifier.citationLee , J , Naden , A B , Savaniu , C D , Connor , P A , Payne , J L , Skelton , J , Gibbs , A , Hui , J , Parker , S & Irvine , J T S 2021 , ' Use of interplay between A-site non-stoichiometry and hydroxide doping to deliver novel proton-conducting perovskite oxides ' , Advanced Energy Materials , vol. 11 , no. 37 , 2101337 . https://doi.org/10.1002/aenm.202101337en
dc.identifier.issn1614-6832
dc.identifier.otherPURE: 274986553
dc.identifier.otherPURE UUID: 76ffca11-5cf6-4bea-9f2a-fe3fcf6daa51
dc.identifier.otherORCID: /0000-0002-8394-3359/work/99115734
dc.identifier.otherORCID: /0000-0002-1492-7590/work/99115938
dc.identifier.otherORCID: /0000-0003-3324-6018/work/99116162
dc.identifier.otherScopus: 85113381072
dc.identifier.otherWOS: 000688519400001
dc.identifier.otherORCID: /0000-0003-2876-6991/work/110912164
dc.identifier.urihttps://hdl.handle.net/10023/23846
dc.descriptionFunding: UK Engineering and Physical Sciences Research Council (Grant Number(s): EP/R023522, EP/R023751, EP/L017008, EP/P007821, EP/L000202, EP/R029431); Diamond Light Source (Grant Number(s): SP17198-8); Rutherford Appleton Laboratory (Grant Number(s): RB1920629).en
dc.description.abstractThe magnitude of ionic conductivity is known to depend upon both mobility and number of available carriers. For proton conductors, hydration is a key factor in determining the charge–carrier concentration in ABO3 perovskite oxides. Despite the high reported proton mobility of calcium titanate (CaTiO3), this titanate perovskite has thus far been regarded as a poor proton conductor due to the low hydration capability. Here, the enhanced proton conductivity of the defective calcium titanate Ca0.92TiO2.84(OH)0.16 prepared by replacing lattice oxygens with hydroxyl groups via a solvothermal route is shown. Conductivity measurements in a humidified Ar atmosphere reveal that, remarkably, this material exhibits one order of magnitude higher bulk conductivity (10−4 Scm−1 at 200 °C) than hydrated stoichiometric CaTiO3 prepared by traditional solid-state synthesis due to the higher concentration of protonic defects and variation in the crystal structure. The replacement of Ca2+ by Ni2+ in the Ca1−xTi1O3−2x(OH)2x, which mostly exsolve metallic Ni nanoparticles along orthorhombic (100) planes upon reduction, is also demonstrated. These results suggest a new strategy by tailoring the defect chemistry via hydration or cation doping followed by exsolution for targeted energy applications.
dc.format.extent7
dc.language.isoeng
dc.relation.ispartofAdvanced Energy Materialsen
dc.rightsCopyright © 2021 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en
dc.subjectDefect chemistryen
dc.subjectExsolutionen
dc.subjectHydrationen
dc.subjectPerovskiteen
dc.subjectProton conductivityen
dc.subjectQD Chemistryen
dc.subjectTK Electrical engineering. Electronics Nuclear engineeringen
dc.subjectDASen
dc.subject.lccQDen
dc.subject.lccTKen
dc.titleUse of interplay between A-site non-stoichiometry and hydroxide doping to deliver novel proton-conducting perovskite oxidesen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorEPSRCen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. Centre for Energy Ethicsen
dc.contributor.institutionUniversity of St Andrews. St Andrews Sustainability Instituteen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.contributor.institutionUniversity of St Andrews. Centre for Designer Quantum Materialsen
dc.identifier.doihttps://doi.org/10.1002/aenm.202101337
dc.description.statusPeer revieweden
dc.identifier.grantnumberEP/R023522/1en
dc.identifier.grantnumberEP/R023751/1en
dc.identifier.grantnumberep/l017008/1en
dc.identifier.grantnumberEP/P007821/1en


This item appears in the following Collection(s)

Show simple item record