Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorBeierlein, Johannes
dc.contributor.authorEgorov, Oleg A.
dc.contributor.authorHarder, Tristan H.
dc.contributor.authorGagel, Philipp
dc.contributor.authorEmmerling, Monika
dc.contributor.authorSchneider, Christian
dc.contributor.authorHöfling, Sven
dc.contributor.authorPeschel, Ulf
dc.contributor.authorKlembt, Sebastian
dc.date.accessioned2021-05-13T11:30:15Z
dc.date.available2021-05-13T11:30:15Z
dc.date.issued2021-05-04
dc.identifier.citationBeierlein , J , Egorov , O A , Harder , T H , Gagel , P , Emmerling , M , Schneider , C , Höfling , S , Peschel , U & Klembt , S 2021 , ' Bloch oscillations of hybrid light-matter particles in a waveguide array ' , Advanced Optical Materials , vol. Early View . https://doi.org/10.1002/adom.202100126en
dc.identifier.issn2195-1071
dc.identifier.otherPURE: 272219560
dc.identifier.otherPURE UUID: a9c266fb-f349-4642-85f9-5cba54c6f4cc
dc.identifier.otherArXiv: http://arxiv.org/abs/2012.14281v1
dc.identifier.otherWOS: 000646744800001
dc.identifier.otherScopus: 85105095831
dc.identifier.urihttps://hdl.handle.net/10023/23177
dc.descriptionFunding: The Würzburg and Jena group acknowledge financial support within the DFG projects PE 523/18-1 and KL3124/2-1. The Würzburg group acknowledges financial support by the German Research Foundation (DFG) under Germany’s Excellence Strategy–EXC2147 “ct.qmat” (project id 390858490). S.H. also acknowledges support by the EPSRC “Hybrid Polaritonics” grant (EP/M025330/1). T.H.H. and S.H. acknowledge funding by the doctoral training program Elitenetzwerk Bayern Graduate School “Topological insulators” (Tols 836315). T.H.H. acknowledges support by the German Academic Scholarship Foundation.en
dc.description.abstractBloch oscillations are a phenomenon well known from quantum mechanics where electrons in a lattice experience an oscillatory motion in the presence of an electric field gradient. Here, the authors report on Bloch oscillations of hybrid light−matter particles, called exciton‐polaritons (polaritons), being confined in an array of coupled microcavity waveguides. To this end, the waveguide widths and their mutual couplings are carefully designed such that a constant energy gradient is induced perpendicular to the direction of motion of the propagating polaritons. This technique allows us to directly observe and study Bloch oscillations in real‐ and momentum‐space. Furthermore, the experimental findings are supported by numerical simulations based on a modified Gross–Pitaevskii approach. This work provides an important transfer of basic concepts of quantum mechanics to integrated solid state devices, using quantum fluids of light.
dc.language.isoeng
dc.relation.ispartofAdvanced Optical Materialsen
dc.rightsCopyright © 2021 The Authors. Advanced Optical Materials published by Wiley‐VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en
dc.subjectBloch oscillationsen
dc.subjectExciton- polaritonen
dc.subjectPolariton condensationen
dc.subjectWaveguidesen
dc.subjectQC Physicsen
dc.subjectTK Electrical engineering. Electronics Nuclear engineeringen
dc.subjectNDASen
dc.subject.lccQCen
dc.subject.lccTKen
dc.titleBloch oscillations of hybrid light-matter particles in a waveguide arrayen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doihttps://doi.org/10.1002/adom.202100126
dc.description.statusPeer revieweden
dc.identifier.grantnumberEP/M025330/1en


This item appears in the following Collection(s)

Show simple item record