Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorvon Schuckmann, Karina
dc.contributor.authorCheng, Lijing
dc.contributor.authorPalmer, Matthew D.
dc.contributor.authorHansen, James
dc.contributor.authorTassone, Caterina
dc.contributor.authorAich, Valentin
dc.contributor.authorAdusumilli, Susheel
dc.contributor.authorBeltrami, Hugo
dc.contributor.authorBoyer, Tim
dc.contributor.authorCuesta-Valero, Francisco Jose
dc.contributor.authorDesbruyeres, Damien
dc.contributor.authorDomingues, Catia
dc.contributor.authorGarcia-Garcia, Almudena
dc.contributor.authorGentine, Pierre
dc.contributor.authorGilson, John
dc.contributor.authorGorfer, Maximilian
dc.contributor.authorHaimberger, Leopold
dc.contributor.authorIshii, Masayoshi
dc.contributor.authorJohnson, Gregory C.
dc.contributor.authorKillick, Rachel
dc.contributor.authorKing, Brian A.
dc.contributor.authorKirchengast, Gottfried
dc.contributor.authorKolodziejczyk, Nicolas
dc.contributor.authorLyman, John
dc.contributor.authorMarzeion, Ben
dc.contributor.authorMayer, Michael
dc.contributor.authorMonier, Maeva
dc.contributor.authorMonselesan, Didier Paolo
dc.contributor.authorPurkey, Sarah
dc.contributor.authorRoemmich, Dean
dc.contributor.authorSchweiger, Axel
dc.contributor.authorSeneviratne, Sonia
dc.contributor.authorShepherd, Andrew
dc.contributor.authorSlater, Donald A.
dc.contributor.authorSteiner, Andrea K.
dc.contributor.authorStraneo, Fiammetta
dc.contributor.authorTimmermans, Mary-Louise
dc.contributor.authorWijffels, Susan E.
dc.date.accessioned2021-03-08T10:30:08Z
dc.date.available2021-03-08T10:30:08Z
dc.date.issued2020-09-07
dc.identifier272791467
dc.identifiera09e38ce-2230-44fe-a714-aac9baea9065
dc.identifier000569379800001
dc.identifier85091056579
dc.identifier.citationvon Schuckmann , K , Cheng , L , Palmer , M D , Hansen , J , Tassone , C , Aich , V , Adusumilli , S , Beltrami , H , Boyer , T , Cuesta-Valero , F J , Desbruyeres , D , Domingues , C , Garcia-Garcia , A , Gentine , P , Gilson , J , Gorfer , M , Haimberger , L , Ishii , M , Johnson , G C , Killick , R , King , B A , Kirchengast , G , Kolodziejczyk , N , Lyman , J , Marzeion , B , Mayer , M , Monier , M , Monselesan , D P , Purkey , S , Roemmich , D , Schweiger , A , Seneviratne , S , Shepherd , A , Slater , D A , Steiner , A K , Straneo , F , Timmermans , M-L & Wijffels , S E 2020 , ' Heat stored in the Earth system : where does the energy go? ' , Earth System Science Data , vol. 12 , no. 3 , pp. 2013-2041 . https://doi.org/10.5194/essd-12-2013-2020en
dc.identifier.issn1866-3508
dc.identifier.otherORCID: /0000-0001-8394-6149/work/88731518
dc.identifier.urihttps://hdl.handle.net/10023/21568
dc.descriptionMatthew D. Palmer and Rachel E. Killick were supported by the Met Office Hadley Centre Climate Programme funded by the BEIS and Defra. PML authors were supported by contribution number 5053. Catia M. Domingues was supported by an ARC Future Fellowship (FT130101532). Lijing Cheng is supported by the Key Deployment Project of Centre for Ocean Mega-Research of Science, CAS (COMS2019Q01). Maximilian Gorfer was supported by WEGC atmospheric remote sensing and climate system research group young scientist funds. Michael Mayer was supported by Austrian Science Fund project P33177. This work was supported by grants from the National Sciences and Engineering Research Council of Canada Discovery Grant (NSERC DG 140576948) and the Canada Research Chairs Program (CRC 230687) to Hugo Beltrami. Almudena García-García and Francisco José Cuesta-Valero are funded by Beltrami's CRC program, the School of Graduate Studies at Memorial University of Newfoundland and the Research Office at St. Francis Xavier University. Fiamma Straneo was supported by NSF OCE 1657601. Susheel Adusumilli was supported by NASA grant 80NSSC18K1424.en
dc.description.abstractHuman-induced atmospheric composition changes cause a radiative imbalance at the top of the atmosphere which is driving global warming. This Earth energy imbalance (EEI) is the most critical number defining the prospects for continued global warming and climate change. Understanding the heat gain of the Earth system - and particularly how much and where the heat is distributed - is fundamental to understanding how this affects warming ocean, atmosphere and land, rising surface temperature, sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory and presents an updated assessment of ocean warming estimates as well as new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2018. The study obtains a consistent long-term Earth system heat gain over the period 1971-2018, with a total heat gain of 358 +/- 37 ZJ, which is equivalent to a global heating rate of 0.47 +/- 0 .1 Wm(-2). Over the period 1971-2018 (2010-2018), the majority of heat gain is reported for the global ocean with 89% (90 %), with 52% for both periods in the upper 700m depth, 28% (30 %) for the 700-2000m depth layer and 9% (8 %) below 2000m depth. Heat gain over land amounts to 6% (5 %) over these periods, 4% (3 %) is available for the melting of grounded and floating ice, and 1% (2 %) is available for atmospheric warming. Our results also show that EEI is not only continuing, but also increasing. the EEI amounts to 0.87 +/- 0.12Wm(-2) during 2010-2018. Stabilization of climate, the goal of the universally agreed United Nations Framework Convention on Climate Change (UNFCCC) in 1992 and the Paris Agreement in 2015, requires that EEI be reduced to approximately zero to achieve Earth's system quasi-equilibrium. The amount of CO2 in the atmosphere would need to be reduced from 410 to 353 ppm to increase heat radiation to space by 0.87Wm(-2), bringing Earth back towards energy balance. This simple number, EEI, is the most fundamental metric that the scientific community and public must be aware of as the measure of how well the world is doing in the task of bringing climate change under control, and we call for an implementation of the EEI into the global stocktake based on best available science. Continued quantification and reduced uncertainties in the Earth heat inventory can be best achieved through the maintenance of the current global climate observing system, its extension into areas of gaps in the sampling, and the establishment of an international framework for concerted multidisciplinary research of the Earth heat inventory as presented in this study. This Earth heat inventory is published at the German Climate Computing Centre (DKRZ, https.//www.dkrz.de/, last access. 7 August 2020) under the DOI https.//doi.org/10.26050/WDCC/GCOS_EHI_EXP_v2 (von Schuckmann et al., 2020).
dc.format.extent29
dc.format.extent4460295
dc.language.isoeng
dc.relation.ispartofEarth System Science Dataen
dc.subjectSea-level riseen
dc.subjectSurface temperatureen
dc.subjectGPS radio occultationen
dc.subjectGlobal oceanen
dc.subjectClimate-changeen
dc.subjectMass-balanceen
dc.subjectArtic amplificationen
dc.subjectSouthern oceanen
dc.subjectNorth Atlanticen
dc.subjectIce dischargeen
dc.subjectGE Environmental Sciencesen
dc.subjectDASen
dc.subjectSDG 13 - Climate Actionen
dc.subjectSDG 15 - Life on Landen
dc.subject.lccGEen
dc.titleHeat stored in the Earth system : where does the energy go?en
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. School of Geography & Sustainable Developmenten
dc.contributor.institutionUniversity of St Andrews. Environmental Change Research Groupen
dc.identifier.doi10.5194/essd-12-2013-2020
dc.description.statusPeer revieweden


This item appears in the following Collection(s)

Show simple item record