St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Heat stored in the Earth system : where does the energy go?

Thumbnail
View/Open
von_Schuckmann_2020_ESED_heat_stored_CC.pdf (4.253Mb)
Date
07/09/2020
Author
von Schuckmann, Karina
Cheng, Lijing
Palmer, Matthew D.
Hansen, James
Tassone, Caterina
Aich, Valentin
Adusumilli, Susheel
Beltrami, Hugo
Boyer, Tim
Cuesta-Valero, Francisco Jose
Desbruyeres, Damien
Domingues, Catia
Garcia-Garcia, Almudena
Gentine, Pierre
Gilson, John
Gorfer, Maximilian
Haimberger, Leopold
Ishii, Masayoshi
Johnson, Gregory C.
Killick, Rachel
King, Brian A.
Kirchengast, Gottfried
Kolodziejczyk, Nicolas
Lyman, John
Marzeion, Ben
Mayer, Michael
Monier, Maeva
Monselesan, Didier Paolo
Purkey, Sarah
Roemmich, Dean
Schweiger, Axel
Seneviratne, Sonia
Shepherd, Andrew
Slater, Donald A.
Steiner, Andrea K.
Straneo, Fiammetta
Timmermans, Mary-Louise
Wijffels, Susan E.
Keywords
Sea-level rise
Surface temperature
GPS radio occultation
Global ocean
Climate-change
Mass-balance
Artic amplification
Southern ocean
North Atlantic
Ice discharge
GE Environmental Sciences
DAS
Metadata
Show full item record
Abstract
Human-induced atmospheric composition changes cause a radiative imbalance at the top of the atmosphere which is driving global warming. This Earth energy imbalance (EEI) is the most critical number defining the prospects for continued global warming and climate change. Understanding the heat gain of the Earth system - and particularly how much and where the heat is distributed - is fundamental to understanding how this affects warming ocean, atmosphere and land, rising surface temperature, sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory and presents an updated assessment of ocean warming estimates as well as new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2018. The study obtains a consistent long-term Earth system heat gain over the period 1971-2018, with a total heat gain of 358 +/- 37 ZJ, which is equivalent to a global heating rate of 0.47 +/- 0 .1 Wm(-2). Over the period 1971-2018 (2010-2018), the majority of heat gain is reported for the global ocean with 89% (90 %), with 52% for both periods in the upper 700m depth, 28% (30 %) for the 700-2000m depth layer and 9% (8 %) below 2000m depth. Heat gain over land amounts to 6% (5 %) over these periods, 4% (3 %) is available for the melting of grounded and floating ice, and 1% (2 %) is available for atmospheric warming. Our results also show that EEI is not only continuing, but also increasing. the EEI amounts to 0.87 +/- 0.12Wm(-2) during 2010-2018. Stabilization of climate, the goal of the universally agreed United Nations Framework Convention on Climate Change (UNFCCC) in 1992 and the Paris Agreement in 2015, requires that EEI be reduced to approximately zero to achieve Earth's system quasi-equilibrium. The amount of CO2 in the atmosphere would need to be reduced from 410 to 353 ppm to increase heat radiation to space by 0.87Wm(-2), bringing Earth back towards energy balance. This simple number, EEI, is the most fundamental metric that the scientific community and public must be aware of as the measure of how well the world is doing in the task of bringing climate change under control, and we call for an implementation of the EEI into the global stocktake based on best available science. Continued quantification and reduced uncertainties in the Earth heat inventory can be best achieved through the maintenance of the current global climate observing system, its extension into areas of gaps in the sampling, and the establishment of an international framework for concerted multidisciplinary research of the Earth heat inventory as presented in this study. This Earth heat inventory is published at the German Climate Computing Centre (DKRZ, https.//www.dkrz.de/, last access. 7 August 2020) under the DOI https.//doi.org/10.26050/WDCC/GCOS_EHI_EXP_v2 (von Schuckmann et al., 2020).
Citation
von Schuckmann , K , Cheng , L , Palmer , M D , Hansen , J , Tassone , C , Aich , V , Adusumilli , S , Beltrami , H , Boyer , T , Cuesta-Valero , F J , Desbruyeres , D , Domingues , C , Garcia-Garcia , A , Gentine , P , Gilson , J , Gorfer , M , Haimberger , L , Ishii , M , Johnson , G C , Killick , R , King , B A , Kirchengast , G , Kolodziejczyk , N , Lyman , J , Marzeion , B , Mayer , M , Monier , M , Monselesan , D P , Purkey , S , Roemmich , D , Schweiger , A , Seneviratne , S , Shepherd , A , Slater , D A , Steiner , A K , Straneo , F , Timmermans , M-L & Wijffels , S E 2020 , ' Heat stored in the Earth system : where does the energy go? ' , Earth System Science Data , vol. 12 , no. 3 , pp. 2013-2041 . https://doi.org/10.5194/essd-12-2013-2020
Publication
Earth System Science Data
Status
Peer reviewed
DOI
https://doi.org/10.5194/essd-12-2013-2020
ISSN
1866-3508
Type
Journal article
Rights
Copyright © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
Description
Matthew D. Palmer and Rachel E. Killick were supported by the Met Office Hadley Centre Climate Programme funded by the BEIS and Defra. PML authors were supported by contribution number 5053. Catia M. Domingues was supported by an ARC Future Fellowship (FT130101532). Lijing Cheng is supported by the Key Deployment Project of Centre for Ocean Mega-Research of Science, CAS (COMS2019Q01). Maximilian Gorfer was supported by WEGC atmospheric remote sensing and climate system research group young scientist funds. Michael Mayer was supported by Austrian Science Fund project P33177. This work was supported by grants from the National Sciences and Engineering Research Council of Canada Discovery Grant (NSERC DG 140576948) and the Canada Research Chairs Program (CRC 230687) to Hugo Beltrami. Almudena García-García and Francisco José Cuesta-Valero are funded by Beltrami's CRC program, the School of Graduate Studies at Memorial University of Newfoundland and the Research Office at St. Francis Xavier University. Fiamma Straneo was supported by NSF OCE 1657601. Susheel Adusumilli was supported by NASA grant 80NSSC18K1424.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/21568

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter