St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic presentations and semigroup constructions

Thumbnail
View/Open
cort_const.pdf (247.1Kb)
Date
08/2010
Author
Cain, Alan J.
Oliver, Graham
Ruskuc, Nik
Thomas, Richard M.
Funder
EPSRC
Grant ID
EP/C523229/1
Keywords
Automatic presentation
FA-presentable
Semigroup construction
Clifford semigroup
Completely simple semigroup
Subsemigroups
QA Mathematics
Metadata
Show full item record
Abstract
An automatic presentation for a relational structure is, informally, an abstract representation of the elements of that structure by means of a regular language such that the relations can all be recognized by finite automata. A structure admitting an automatic presentation is said to be FA-presentable. This paper studies the interaction of automatic presentations and certain semigroup constructions, namely: direct products, free products, finite Rees index extensions and subsemigroups, strong semilattices of semigroups, Rees matrix semigroups, Bruck-Reilly extensions, zero-direct unions, semidirect products, wreath products, ideals, and quotient semigroups. For each case, the closure of the class of FA-presentable semigroups under that construction is considered, as is the question of whether the FA-presentability of the semigroup obtained from such a construction implies the FA-presentability of the original semigroup[s]. Classifications are also given of the FA-presentable finitely generated Clifford semigroups, completely simple semigroups, and completely 0-simple semigroups.
Citation
Cain , A J , Oliver , G , Ruskuc , N & Thomas , R M 2010 , ' Automatic presentations and semigroup constructions ' , Theory of Computing Systems , vol. 47 , no. 2 , pp. 568-592 . https://doi.org/10.1007/s00224-009-9216-4
Publication
Theory of Computing Systems
Status
Peer reviewed
DOI
https://doi.org/10.1007/s00224-009-9216-4
ISSN
1432-4350
Type
Journal article
Rights
This is an author version of this article. The original publication, (c) Springer Science+Business Media, LLC 2009, is available at www.springerlink.com
Collections
  • University of St Andrews Research
URL
http://www.scopus.com/inward/record.url?scp=77952952975&partnerID=8YFLogxK
URI
http://hdl.handle.net/10023/2148

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter