St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of very high luminance p–i–n junction-based blue fluorescent organic light-emitting diodes

Thumbnail
View/Open
Deng_2020_Development_of_a_very_high_AOM_AAM.pdf (1.294Mb)
Date
20/01/2020
Author
Deng, Yali
Murawski, Caroline
Keum, Changmin
Yoshida, Kou
Samuel, Ifor D. W.
Gather, Malte C.
Keywords
CMOS-compatible devices
Device dimensions
Electron-blocking layer
High brightness
High current density
Organic light-emitting diodes
Resistance of anode contact
QC Physics
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Organic light‐emitting diodes (OLEDs) can emit light over much larger areas than their inorganic counterparts, offer mechanical flexibility, and can be readily integrated on various substrates and backplanes. However, the amount of light they emit per unit area is typically lower and the required operating voltage is higher, which can be a limitation for emerging applications of OLEDs, e.g., in outdoor and high‐dynamic‐range displays, biomedical devices, or visible‐light communication. Here, high‐luminance, blue‐emitting (λpeak = 464 nm), fluorescent p–i–n OLEDs are developed by combining three strategies: First, the thickness of the intrinsic layers in the device is decreased to reduce internal voltage loss. Second, different electron‐blocking layer materials are tested to recover efficiency losses resulting from this thickness reduction. Third, the geometry of the anode contact is optimized, which leads to a substantial reduction in the in‐plane resistive voltage losses. The OLEDs retain a maximum external quantum efficiency of 4.4% as expected for an optimized fluorescent device and reach a luminance of 132 000 cd m−2 and an optical power density of 2.4 mW mm−2 at 5 V, a nearly eightfold improvement compared to the original reference device.
Citation
Deng , Y , Murawski , C , Keum , C , Yoshida , K , Samuel , I D W & Gather , M C 2020 , ' Development of very high luminance p–i–n junction-based blue fluorescent organic light-emitting diodes ' , Advanced Optical Materials , vol. Early View , 1901721 . https://doi.org/10.1002/adom.201901721
Publication
Advanced Optical Materials
Status
Peer reviewed
DOI
https://doi.org/10.1002/adom.201901721
ISSN
2195-1071
Type
Journal article
Rights
Copyright © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1002/adom.201901721
Description
This research was financially supported by the EPSRC NSF‐CBET lead agency agreement (EP/R010595/1, 1706207), the DARPA‐NESD programme (N66001‐17‐C‐4012), and the Leverhulme Trust (RPG‐2017‐231). Y.L.D. acknowledges a stipend from the Chinese Scholarship Council (CSC). C.M. acknowledges funding by the European Commission through a Marie Skłodowska Curie Individual Fellowship (703387). C.K. acknowledges support from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1A6A3A03012331).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/21287

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter