St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Collaborative heterogeneity-aware OS scheduler for asymmetric multicore processors

Thumbnail
View/Open
COLAB_TPDS20.pdf (2.972Mb)
Date
01/05/2021
Author
Yu, Teng
Zhong, Runxin
Janjic, Vladimir
Petoumenos, Pavlos
Zhai, Jidong
Leather, Hugh
Thomson, John Donald
Funder
EPSRC
Grant ID
EP/P020631/1
Keywords
Assymetric multicore processors
Operating system
Scheduling
Performance model
Energy efficiency
QA75 Electronic computers. Computer science
QA76 Computer software
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Asymmetric multicore processors (AMP) offer multiple types of cores under the same programming interface. Extracting the full potential of AMPs requires intelligent scheduling decisions, matching each thread with the right kind of core, the core that will maximize performance or minimize wasted energy for this thread. Existing OS schedulers are not up to this task. While they may handle certain aspects of asymmetry in the system, none can handle all runtime factors affecting AMPs for the general case of multi-threaded multi-programmed workloads. We address this problem by introducing COLAB, a general purpose asymmetry-aware scheduler targeting multi-threaded multi-programmed workloads. It estimates the performance and power of each thread on each type of core and identifies communication patterns and bottleneck threads. With this information, the scheduler makes coordinated core assignment and thread selection decisions that still provide each application its fair share of the processor’s time. We evaluate our approach using both the GEM5 simulator on four distinct big.LITTLE configurations and a development board with ARM Cortex-A73/A53 processors and mixed workloads composed of PARSEC and SPLASH2 benchmarks. Compared to the state-of-the art Linux CFS and AMP-aware schedulers, we demonstrate performance gains of up to 25% and 5% to 15% on average,together with an average 5% energy saving depending on the hardware setup.
Citation
Yu , T , Zhong , R , Janjic , V , Petoumenos , P , Zhai , J , Leather , H & Thomson , J D 2021 , ' Collaborative heterogeneity-aware OS scheduler for asymmetric multicore processors ' , IEEE Transactions on Parallel and Distributed Systems , vol. 32 , no. 5 , pp. 1224-1237 . https://doi.org/10.1109/TPDS.2020.3045279
Publication
IEEE Transactions on Parallel and Distributed Systems
Status
Peer reviewed
DOI
https://doi.org/10.1109/TPDS.2020.3045279
ISSN
1045-9219
Type
Journal article
Rights
Copyright © 2020 IEEE. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1109/TPDS.2020.3045279.
Description
Funding: This work is supported in part by the China Postdoctoral Science Foundation (Grant No. 2020TQ0169), the ShuiMu Tsinghua Scholar fellowship (2019SM131), National Key R&D Program of China (2020AAA0105200), National Natural Science Foundation of China (U20A20226), Beijing Natural Science Foundation (4202031), Beijing Academy of Artificial Intelligence BAAI), the UK EPSRC grants Discovery: Pattern Discovery and Program Shaping for Manycore Systems (EP/P020631/1). This work is also supported by the Royal Academy of Engineering under the Research Fellowship scheme.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/21193

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter