St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rapid shifts in circulation and biogeochemistry of the Southern Ocean during deglacial carbon cycle events

Thumbnail
View/Open
Li_2020_SA_Rapidshifts_CC.pdf (4.489Mb)
Date
16/10/2020
Author
Li, Tao
Robinson, Laura F.
Chen, Tianyu
Wang, Xingchen T.
Burke, Andrea
Rae, James W. B.
Pegrum-Haram, Albertine
Knowles, Timothy D. J.
Li, Gaojun
Chen, Jun
Ng, Hong Chin
Prokopenko, Maria
Rowland, George
Samperiz, Ana
Stewart, Joseph A.
Southon, John
Spooner, Peter T.
Keywords
GC Oceanography
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The Southern Ocean plays a crucial role in regulating atmospheric CO2 on centennial to millennial time scales. However, observations of sufficient resolution to explore this have been lacking. Here, we report high-resolution, multiproxy records based on precisely dated deep-sea corals from the Southern Ocean. Paired deep (∆14C and δ11B) and surface (δ15N) proxy data point to enhanced upwelling coupled with reduced efficiency of the biological pump at 14.6 and 11.7 thousand years (ka) ago, which would have facilitated rapid carbon release to the atmosphere. Transient periods of unusually well-ventilated waters in the deep Southern Ocean occurred at 16.3 and 12.8 ka ago. Contemporaneous atmospheric carbon records indicate that these Southern Ocean ventilation events are also important in releasing respired carbon from the deep ocean to the atmosphere. Our results thus highlight two distinct modes of Southern Ocean circulation and biogeochemistry associated with centennial-scale atmospheric CO2 jumps during the last deglaciation.
Citation
Li , T , Robinson , L F , Chen , T , Wang , X T , Burke , A , Rae , J W B , Pegrum-Haram , A , Knowles , T D J , Li , G , Chen , J , Ng , H C , Prokopenko , M , Rowland , G , Samperiz , A , Stewart , J A , Southon , J & Spooner , P T 2020 , ' Rapid shifts in circulation and biogeochemistry of the Southern Ocean during deglacial carbon cycle events ' , Science Advances , vol. 6 , no. 42 , eabb3807 . https://doi.org/10.1126/sciadv.abb3807
Publication
Science Advances
Status
Peer reviewed
DOI
https://doi.org/10.1126/sciadv.abb3807
ISSN
2375-2548
Type
Journal article
Rights
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
Description
Support for this work comes from the European Research Council, the Natural Environmental Research Council, the U.S. National Science Foundation, the National Oceanic and Atmospheric Administration (NOAA) Ocean Exploration Trust, the Royal Society Newton Mobility Grant in conjunction with the National Natural Science Foundation of China (No. 41711530222), the National Natural Science Foundation of China (No. 41991325, 41822603, and 91955201), the China Scholarship Council, and the program A for outstanding PhD candidate of Nanjing University. Computational resources for the SOSE are provided by NSF XSEDE resource grant OCE130007.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/20828

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter