St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

An electronically driven improper ferroelectric : tungsten bronzes as microstructural analogs for the hexagonal manganites

Thumbnail
View/Open
McNulty_CNW_Manuscript_submitted.pdf (3.504Mb)
Date
04/10/2019
Author
McNulty, Jason A.
Tran, T. Thao
Halasyamani, P. Shiv
McCartan, Shane
MacLaren, Ian
Gibbs, Alexandra
Lim, Felicia
Turner, Patrick
Gregg, J. Marty
Lightfoot, Philip
Morrison, Finlay D.
Funder
EPSRC
Grant ID
EP/P024637/1
Keywords
Improper ferroelectricity
Ferroelectrics
Domain walls
Structure-property relationships
QC Physics
QD Chemistry
NDAS
BDC
R2C
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Since the observation that the properties of ferroic domain walls (DWs) can differ significantly from the bulk materials in which they are formed, it has been realized that domain wall engineering offers exciting new opportunities for nanoelectronics and nanodevice architectures. Here, a novel improper ferroelectric, CsNbW2O9, with the hexagonal tungsten bronze structure, is reported. Powder neutron diffraction and symmetry mode analysis indicate that the improper transition (TC = 1100 K) involves unit cell tripling, reminiscent of the hexagonal rare earth manganites. However, in contrast to the manganites the symmetry breaking in CsNbW2O9 is electronically driven (i.e., purely displacive) via the second-order Jahn-Teller effect in contrast to the geometrically-driven tilt mechanism of the manganites. Nevertheless CsNbW2O9 displays the same kinds of domain microstructure as those found in the manganites, such as the characteristic six-domain "cloverleaf" vertices and DW sections with polar discontinuities. The discovery of a completely new material system, with domain patterns already known to generate interesting functionality in the manganites, is important for the emerging field of DW nanoelectronics.
Citation
McNulty , J A , Tran , T T , Halasyamani , P S , McCartan , S , MacLaren , I , Gibbs , A , Lim , F , Turner , P , Gregg , J M , Lightfoot , P & Morrison , F D 2019 , ' An electronically driven improper ferroelectric : tungsten bronzes as microstructural analogs for the hexagonal manganites ' , Advanced Materials , vol. 31 , no. 40 , 1903620 . https://doi.org/10.1002/adma.201903620
Publication
Advanced Materials
Status
Peer reviewed
DOI
https://doi.org/10.1002/adma.201903620
ISSN
0935-9648
Type
Journal article
Rights
Copyright © 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1002/adma.201903620
Description
JAM would like to acknowledge the School of Chemistry, University of St Andrews for the allocation of a PhD studentship through the EPSRC doctoral training grant (EP/ K503162/1). The work carried out at the University of St Andrews and Queens University Belfast was carried out as part of an EPSRC-funded collaboration (EP/P02453X/1 and EP/P024637/1). The work carried out at the University of Glasgow was carried out as part of the EPSRC-funded CDT in Photonic Integration and Advanced Data Storage (EP/L015323/1). TTT and PSH thank the Welch Foundation (Grant E-1457) and NSF (DMR-1503573) for support.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/20422

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter