St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Photon-generated carrier transfer process from graphene to quantum dots : optical evidences and ultrafast photonics applications

Thumbnail
View/Open
Wang_2020_npj2DMA_Photon_generated_CC.pdf (5.152Mb)
Date
31/07/2020
Author
Wang, X.
Li, X. H.
Jiang, C.
Brown, C. Tom A.
Ning, J. Q.
Zhang, K.
Yu, Q.
Ge, X. T.
Wang, Q. J.
Zhang, Z. Y.
Keywords
QC Physics
NDAS
BDC
R2C
Metadata
Show full item record
Abstract
Graphene/III–V semiconductor van der Waals (vdW) heterostructures offer potential access to physics, functionalities, and superior performance of optoelectronic devices. Nevertheless, the lack of a bandgap in graphene severely restricts the controllability of carrier properties and therefore impedes its applications. Here, we demonstrate the engineering of graphene bandgap in the graphene/GaAs heterostructure via C and Ga exchange induced by the method of femtosecond laser irradiation (FLI). The coupling of the bandgap-opened graphene with GaAs significantly enhances both the harvest of photons and the transfer of photon-generated carriers across the interface of vdW heterostructures. Thus, as a demonstration example, it allows us to develop a saturable absorber combining a delicately engineered graphene/GaAs vdW heterostructure with InAs quantum dots capped with short-period superlattices. This device exhibits significantly improved nonlinear characteristics including <1/3 saturation intensity and modulation depth 20 times greater than previously reported semiconductor saturable absorber mirrors. This work not only opens the route for the future development of even higher performance mode-locked lasers, but the significantly enhanced nonlinear characteristics due to doping-induced bandgap opening of graphene by FLI in the vdW heterostructures will also inspire wide applications in photonic and optoelectronic devices.
Citation
Wang , X , Li , X H , Jiang , C , Brown , C T A , Ning , J Q , Zhang , K , Yu , Q , Ge , X T , Wang , Q J & Zhang , Z Y 2020 , ' Photon-generated carrier transfer process from graphene to quantum dots : optical evidences and ultrafast photonics applications ' , npj 2D Materials and Applications , vol. 4 , 27 . https://doi.org/10.1038/s41699-020-00160-6
Publication
npj 2D Materials and Applications
Status
Peer reviewed
DOI
https://doi.org/10.1038/s41699-020-00160-6
ISSN
2397-7132
Type
Journal article
Rights
Copyright © The Author(s) 2020. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Description
The authors acknowledge Natural Science Foundation of China (Grant Nos. 61875222, 61875223, 61605106, 11874390).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/20400

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter