An introduction to model compounds of lignin linking motifs; synthesis and selection considerations for reactivity studies
Abstract
The development of fundamentally new valorization strategies for lignin plays a vital role in unlocking the true potential of lignocellulosic biomass as sustainable and economically compatible renewable carbon feedstock. In particular, new catalytic modification and depolymerization strategies are required. Progress in this field, past and future, relies for a large part on the application of synthetic model compounds that reduce the complexity of working with the lignin biopolymer. This aids the development of catalytic methodologies and in-depth mechanistic studies and guides structural characterization studies in the lignin field. However, due to the volume of literature and the piecemeal publication of methodology, the choice of suitable lignin model compounds is far from straight forward, especially for those outside the field and lacking a background in organic synthesis. For example, in catalytic depolymerization studies, a balance between synthetic effort and fidelity compared to the actual lignin of interest needs to be found. In this review, we provide a broad overview of the model compounds available to study the chemistry of the main native linking motifs typically found in lignins from woody biomass, the synthetic routes and effort required to access them, and discuss to what extent these represent actual lignin structures. This overview can aid researchers in their selection of the most suitable lignin model systems for the development of emerging lignin modification and depolymerization technologies, maximizing their chances of successfully developing novel lignin valorization strategies.
Citation
Lahive , C , Kamer , P , Lancefield , C & Deuss , P J 2020 , ' An introduction to model compounds of lignin linking motifs; synthesis and selection considerations for reactivity studies ' , CHEMSUSCHEM , vol. Early View . https://doi.org/10.1002/cssc.202000989
Publication
CHEMSUSCHEM
Status
Peer reviewed
ISSN
1864-5631Type
Journal item
Rights
Copyright © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Description
C.W.L., P.C.J.K. and P.J.D. would like to thank the European Union (Marie Curie ITN “SuBiCat” PITN-GA-2013-607044, C.W.L. also thanks the framework of the Dutch TKI-BBEI project “CALIBRA”, reference TEBE117014. P.C.J.K. also thanks the EPSRC (critical mass grant EP/J018139/ 1). C.S.L. thanks the Leverhulme Trust Early Career Fellowship (ECF‐2018‐480) and the University of St Andrews.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.