Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorTian, Meng
dc.contributor.authorKatz, Richard F.
dc.contributor.authorRees Jones, David W.
dc.date.accessioned2020-06-03T07:51:22Z
dc.date.available2020-06-03T07:51:22Z
dc.date.issued2019-12
dc.identifier.citationTian , M , Katz , R F & Rees Jones , D W 2019 , ' Devolatilization of subducting slabs, Part I : Thermodynamic parameterization and open system effects ' , Geochemistry, Geophysics, Geosystems , vol. 20 , no. 12 , pp. 5667-5690 . https://doi.org/10.1029/2019GC008488en
dc.identifier.issn1525-2027
dc.identifier.otherPURE: 263086469
dc.identifier.otherPURE UUID: 20a8a536-8101-4e48-b71d-e6f57339f936
dc.identifier.otherBibtex: doi:10.1029/2019GC008488
dc.identifier.otherORCID: /0000-0001-8698-401X/work/65702698
dc.identifier.otherScopus: 85076373447
dc.identifier.otherWOS: 000500081500001
dc.identifier.urihttps://hdl.handle.net/10023/20039
dc.descriptionFunding: UK NERC Consortium grant NE/M000427/1 and NERC Standard grant NE/I026995/1 (D.R.J). European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 772255)en
dc.description.abstractThe amount of H2O and CO2 that is carried into deep mantle by subduction beyond subarc depths is of fundamental importance to the deep volatile cycle but remains debated. Given the large uncertainties surrounding the spatio-temporal pattern of fluid flow and the equilibrium state within subducting slabs, a model of H2O and CO2 transport in slabs should be balanced between model simplicity and capability. We construct such a model in a two-part contribution. In this Part I of our contribution, thermodynamic parameterization is performed for the devolatilization of representative subducting materials—sediments, basalts, gabbros, peridotites. The parameterization avoids reproducing the details of specific devolatilization reactions, but instead captures the overall behaviors of coupled (de)hydration and (de)carbonation. Two general, leading-order features of devolatilization are captured: (1) the released volatiles are H2O-rich near the onset of devolatilization; (2) increase of the ratio of bulk CO2 over H2O inhibits overall devolatilization and thus lessens decarbonation. These two features play an important role in simulation of volatile fractionation and infiltration in thermodynamically open systems. When constructing the reactive fluid flow model of slab H2O and CO2 transport in the companion paper Part II, this parameterization can be incorporated to efficiently account for the open-system effects of H2O and CO2 transport.
dc.format.extent24
dc.language.isoeng
dc.relation.ispartofGeochemistry, Geophysics, Geosystemsen
dc.rightsCopyright © 2019 American Geophysical Union. All rights reserved. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the final published version of the work, which was originally published at https://doi.org/10.1029/2019GC008488en
dc.subjectThermodynamic parameterizationen
dc.subjectDehydrationen
dc.subjectDecarbonationen
dc.subjectCarbon transporten
dc.subjectOpen systemsen
dc.subjectSubduction zoneen
dc.subjectQA Mathematicsen
dc.subjectQC Physicsen
dc.subjectQE Geologyen
dc.subjectNDASen
dc.subject.lccQAen
dc.subject.lccQCen
dc.subject.lccQEen
dc.titleDevolatilization of subducting slabs, Part I : Thermodynamic parameterization and open system effectsen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. Applied Mathematicsen
dc.identifier.doihttps://doi.org/10.1029/2019GC008488
dc.description.statusPeer revieweden
dc.date.embargoedUntil2020-06-03


This item appears in the following Collection(s)

Show simple item record