St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Devolatilization of subducting slabs, Part I : Thermodynamic parameterization and open system effects

Thumbnail
View/Open
Tian_et_al_2019_Geochemistry_Geophysics_Geosystems_Early.pdf (22.01Mb)
Date
12/2019
Author
Tian, Meng
Katz, Richard F.
Rees Jones, David W.
Keywords
Thermodynamic parameterization
Dehydration
Decarbonation
Carbon transport
Open systems
Subduction zone
QA Mathematics
QC Physics
QE Geology
NDAS
Metadata
Show full item record
Abstract
The amount of H2O and CO2 that is carried into deep mantle by subduction beyond subarc depths is of fundamental importance to the deep volatile cycle but remains debated. Given the large uncertainties surrounding the spatio-temporal pattern of fluid flow and the equilibrium state within subducting slabs, a model of H2O and CO2 transport in slabs should be balanced between model simplicity and capability. We construct such a model in a two-part contribution. In this Part I of our contribution, thermodynamic parameterization is performed for the devolatilization of representative subducting materials—sediments, basalts, gabbros, peridotites. The parameterization avoids reproducing the details of specific devolatilization reactions, but instead captures the overall behaviors of coupled (de)hydration and (de)carbonation. Two general, leading-order features of devolatilization are captured: (1) the released volatiles are H2O-rich near the onset of devolatilization; (2) increase of the ratio of bulk CO2 over H2O inhibits overall devolatilization and thus lessens decarbonation. These two features play an important role in simulation of volatile fractionation and infiltration in thermodynamically open systems. When constructing the reactive fluid flow model of slab H2O and CO2 transport in the companion paper Part II, this parameterization can be incorporated to efficiently account for the open-system effects of H2O and CO2 transport.
Citation
Tian , M , Katz , R F & Rees Jones , D W 2019 , ' Devolatilization of subducting slabs, Part I : Thermodynamic parameterization and open system effects ' , Geochemistry, Geophysics, Geosystems , vol. 20 , no. 12 , pp. 5667-5690 . https://doi.org/10.1029/2019GC008488
Publication
Geochemistry, Geophysics, Geosystems
Status
Peer reviewed
DOI
https://doi.org/10.1029/2019GC008488
ISSN
1525-2027
Type
Journal article
Rights
Copyright © 2019 American Geophysical Union. All rights reserved. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the final published version of the work, which was originally published at https://doi.org/10.1029/2019GC008488
Description
Funding: UK NERC Consortium grant NE/M000427/1 and NERC Standard grant NE/I026995/1 (D.R.J). European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 772255)
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/20039

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter