Normalisers of primitive permutation groups in quasipolynomial time
View/ Open
Date
23/04/2020Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We show that given generators for subgroups G and H of Sn, if G is primitive then generators for NH(G) may be computed in quasipolynomial time, namely 2O(log^3 n). The previous best known bound was simply exponential.
Citation
Roney-Dougal , C M & Siccha , S 2020 , ' Normalisers of primitive permutation groups in quasipolynomial time ' , Bulletin of the London Mathematical Society , vol. 52 , no. 2 , pp. 358-366 . https://doi.org/10.1112/blms.12330
Publication
Bulletin of the London Mathematical Society
Status
Peer reviewed
ISSN
0024-6093Type
Journal article
Rights
© 2020 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1112/blms.12330
Description
Funding: Isaac Newton Institute for Mathematical Sciences for support and hospitality during the programme “Groups, Representations and Applications: New perspectives”, when work on this paper was undertaken. This work was supported by EPSRC grant number EP/R014604/1.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.