St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Coordination of cytoskeletal dynamics and cell behaviour during Drosophila abdominal morphogenesis

Thumbnail
View/Open
PulidoCompanys_2020_JCS_Cytoskeletal_CC.pdf (15.89Mb)
Date
30/03/2020
Author
Pulido Companys, Pau
Norris, Anneliese
Bischoff, Marcus
Keywords
Cell migration
Apical constriction
Pulsed contractions
Actomyosin contractility
Drosophila
QH301 Biology
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
During morphogenesis, cells exhibit various behaviours, such as migration and constriction, which need to be coordinated. How this is achieved remains elusive. During morphogenesis of the Drosophila adult abdominal epidermis, larval epithelial cells (LECs) migrate directedly before constricting apically and undergoing apoptosis. Here, we study the mechanisms underlying the transition from migration to constriction. We show that LECs possess a pulsatile apical actomyosin network, and that a change in network polarity correlates with behavioural change. Exploring the properties of the contractile network, we find that cell contractility, as determined by myosin activity, has an impact on the behaviour of the network, as well as on cytoskeletal architecture and cell behaviour. Pulsed contractions occur only in cells with intermediate levels of contractility. Furthermore, increasing levels of the small Rho GTPase Rho1 disrupts pulsing, leading to cells that cycle between two states, characterised by a junctional cortical and an apicomedial actin network. Our results highlight that behavioural change relies on tightly controlled cellular contractility. Moreover, we show that constriction can occur without pulsing, raising questions why constricting cells pulse in some contexts but not in others.
Citation
Pulido Companys , P , Norris , A & Bischoff , M 2020 , ' Coordination of cytoskeletal dynamics and cell behaviour during Drosophila abdominal morphogenesis ' , Journal of Cell Science , vol. 133 , no. 6 , jcs235325 . https://doi.org/10.1242/jcs.235325
Publication
Journal of Cell Science
Status
Peer reviewed
DOI
https://doi.org/10.1242/jcs.235325
ISSN
0021-9533
Type
Journal article
Rights
Copyright © 2020 The Author(s). Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by/4.0This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.
Description
This work was supported by the BBSRC (BB/M021084/1).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/19733

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter