St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Conjugated, rigidified bibenzimidazole ancillary ligands for enhanced photoluminescence quantum yields of orange/red-emitting iridium(III) complexes

Thumbnail
View/Open
Bibenzimidazole_ver_18.pdf (5.360Mb)
Date
14/07/2019
Author
Henwood, Adam F.
Antón-García, Daniel
Morin, Mégane
Rota Martir, Diego
Cordes, David B.
Casey, Colin
Slawin, Alexandra M. Z.
Lebl, Tomas
Buehl, Michael
Zysman-Colman, Eli
Keywords
QD Chemistry
DAS
Metadata
Show full item record
Abstract
A series of six novel [Ir(C^N)2(N^N)](PF6) complexes (C^N is one of two cyclometalating ligands: 2-phenyl-4-(2,4,6-trimethylphenyl)pyridine, MesppyH, or 2- (napthalen-1-yl)-4-(2,4,6-trimethylphenyl)pyridine, MesnpyH; N^N denotes one of four neutral diamine ligands: 4,4’-di-tert-butyl-2,2’-bipyridine, dtbubpy, 1H,1’H-2,2’- bibenzimiazole, H2bibenz, 1,1’-(α,α’-o-xylylene)-2,2’-bibenzimidazole, o-Xylbibenz or 2,2’- biquinoline, biq) were synthesised and their structural, electrochemical and photophysical properties comprehensively characterised. The more conjugated MesnpyH ligands confer a red-shift in the emission compared to MesppyH but maintain high photoluminescence quantum yields due to the steric bulk of the mesityl groups. The H2bibenz and o-Xylbibenz ligands are shown to be electronically indistinct to dtbubpy but give complexes with higher quantum yields than analogous complexes bearing dtbubpy. In particular, the rigidity of the o-Xylbibenz ligand, combined with the steric bulk of the MesnpyH C^N ligands, give a red-emitting complex 4 (λPL = 586, 623 nm) with a very high photoluminescence quantum yield (ΦPL = 44%) for an emitter in that regime of the visible spectrum. These results suggest that employing these ligands is a viable strategy for designing more efficient orange-red emitters for use in a variety of photophysical applications.
Citation
Henwood , A F , Antón-García , D , Morin , M , Rota Martir , D , Cordes , D B , Casey , C , Slawin , A M Z , Lebl , T , Buehl , M & Zysman-Colman , E 2019 , ' Conjugated, rigidified bibenzimidazole ancillary ligands for enhanced photoluminescence quantum yields of orange/red-emitting iridium(III) complexes ' , Dalton Transactions , vol. 48 , no. 26 . https://doi.org/10.1039/C9DT00423H
Publication
Dalton Transactions
Status
Peer reviewed
DOI
https://doi.org/10.1039/C9DT00423H
ISSN
1477-9226
Type
Journal article
Rights
Copyright © 2019 The Author(s), Publisher. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1039/C9DT00423H
Description
EZ-C acknowledges the University of St Andrews for financial support. We thank Umicore AG for the gift of materials. We would like to thank the Engineering and Physical Sciences Research Council for financial support for E.Z-C. (EP/M02105X/1) and for the studentship of A.H. (EP/J500549/1, EP/K503162/1, EP/L505097/1). We thank the EPSRC UK National Mass Spectrometry Facility at Swansea University for analytical services. We also would like to thank EaStCHEM and the School of Chemistry for supporting the computing facilities maintained by Dr. H. Früchtl.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/19606

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter