St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optical coherence tomography-based contact indentation for diaphragm mechanics in a mouse model of transforming growth factor alpha induced lung disease

Thumbnail
View/Open
Wijesinghe_2017_SciRep_Optical_1517.pdf (1.966Mb)
Date
04/05/2017
Author
Wang, Kimberley C.W.
Astell, Chrissie J.
Wijesinghe, Philip
Larcombe, Alexander N.
Pinniger, Gavin J.
Zosky, Graeme R.
Kennedy, Brendan F.
Berry, Luke J.
Sampson, David D.
James, Alan L.
Le Cras, Timothy D.
Noble, Peter B.
Keywords
Optical imaging
Respiration
QC Physics
QH301 Biology
RC Internal medicine
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
This study tested the utility of optical coherence tomography (OCT)-based indentation to assess mechanical properties of respiratory tissues in disease. Using OCT-based indentation, the elastic modulus of mouse diaphragm was measured from changes in diaphragm thickness in response to an applied force provided by an indenter. We used a transgenic mouse model of chronic lung disease induced by the overexpression of transforming growth factor-alpha (TGF-α), established by the presence of pleural and peribronchial fibrosis and impaired lung mechanics determined by the forced oscillation technique and plethysmography. Diaphragm elastic modulus assessed by OCT-based indentation was reduced by TGF-α at both left and right lateral locations (p < 0.05). Diaphragm elastic modulus at left and right lateral locations were correlated within mice (r = 0.67, p < 0.01) suggesting that measurements were representative of tissue beyond the indenter field. Co-localised images of diaphragm after TGF-α overexpression revealed a layered fibrotic appearance. Maximum diaphragm force in conventional organ bath studies was also reduced by TGF-α overexpression (p < 0.01). Results show that OCT-based indentation provided clear delineation of diseased diaphragm, and together with organ bath assessment, provides new evidence suggesting that TGF-α overexpression produces impairment in diaphragm function and, therefore, an increase in the work of breathing in chronic lung disease.
Citation
Wang , K C W , Astell , C J , Wijesinghe , P , Larcombe , A N , Pinniger , G J , Zosky , G R , Kennedy , B F , Berry , L J , Sampson , D D , James , A L , Le Cras , T D & Noble , P B 2017 , ' Optical coherence tomography-based contact indentation for diaphragm mechanics in a mouse model of transforming growth factor alpha induced lung disease ' , Scientific Reports , vol. 7 , 1517 . https://doi.org/10.1038/s41598-017-01431-x
Publication
Scientific Reports
Status
Peer reviewed
DOI
https://doi.org/10.1038/s41598-017-01431-x
ISSN
2045-2322
Type
Journal article
Rights
Copyright © The Author(s) 2017. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Description
Funding provided by the National Health and Medical Research Council (NHMRC) of Australia (1027218). P.N. and K.W. are supported by NHMRC Fellowships (1045824, 1090888). P.W. was supported by the William and Marlene Schrader Postgraduate Scholarship, The University of Western Australia, and C.A. by an NHMRC Preterm Infants CRE top-up scholarship.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/19551

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter