St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Organic flexible memristor with reduced operating voltage and high stability by interfacial control of conductive filament growth

Thumbnail
View/Open
Lee_2019_Organic_flexible_memristor_PSS_RRL_AAM.pdf (925.0Kb)
Date
27/02/2019
Author
Lee, Sin-Hyung
Park, Hea-Lim
Keum, Chang-Min
Lee, In-Ho
Kim, Min-Hoi
Lee, Sin-Doo
Keywords
Conductive filament growth
Electrochemical metallization
Ion migration
Organic memristors
Polymer electrolytes
Resistive switching
QC Physics
T Technology
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Herein, the underlying mechanisms for the growth of conductive filaments (CFs) at a metal–polymer electrolyte interface through ion migration in organic electrochemical metallization (ECM) memristor are presented. It is observed that the free volume of voids (nanopores) in the polymer electrolyte serves as the pathways of metal‐cations whereas the interfacial topography between an active electrode and a polymer electrolyte determines the nucleation sites of the CFs. The growth kinetics of the CFs and the resultant resistive memory are found to vary with the molecular weight of the polymer electrolyte and the metal protrusions at the interface. Our direct observations show that the free volume of voids of the polymer electrolyte, varied with the molecular weight, dictates the ion transport for the growth and the disruption of the CFs. Our organic ECM‐based memristor with a hetero‐electrolyte exhibits high mechanical flexibility, low switching voltages reduced by about three times compared to those of conventional devices, and stable memory retention for longer than 104 s under repeated cycles of bending.
Citation
Lee , S-H , Park , H-L , Keum , C-M , Lee , I-H , Kim , M-H & Lee , S-D 2019 , ' Organic flexible memristor with reduced operating voltage and high stability by interfacial control of conductive filament growth ' , Physica Status Solidi - Rapid Research Letters , vol. Early View , 1900044 . https://doi.org/10.1002/pssr.201900044
Publication
Physica Status Solidi - Rapid Research Letters
Status
Peer reviewed
DOI
https://doi.org/10.1002/pssr.201900044
ISSN
1862-6254
Type
Journal article
Rights
© 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This work has been made available online in accordance with the publisher's policies. This is the author created accepted version manuscript following peer review and as such may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1002/pssr.201900044
Description
This work was supported in part through the BK21 Program funded by Ministry of Education of Korea.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/19541

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter