St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Phonon-glass and heterogeneous electrical transport in A-site-deficient SrTiO3

Thumbnail
View/Open
SrTiO3_PGEC_Accepted.pdf (1.399Mb)
Date
07/03/2019
Author
Popuri, S. R.
Decourt, R.
McNulty, J. A.
Pollet, M.
Fortes, A. D.
Morrison, F. D.
Senn, M. S.
Bos, J. W.G.
Funder
EPSRC
Grant ID
EP/P024637/1
Keywords
Thermoelectric performance
Thermal-conductivity
LA
Ceramics
Titanate
Figure
Merit
Oxide
QD Chemistry
Electronic, Optical and Magnetic Materials
Energy(all)
Physical and Theoretical Chemistry
Surfaces, Coatings and Films
DAS
BDC
MCP
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The phonon-glass electron crystal concept is one of the key guiding principles for the development of efficient thermoelectric materials. Here, we confirm that SrTiO 3 becomes a phonon-glass for large numbers of A-site vacancies in the Sr 1-x La 0.67x → 0.33x TiO 3 series and show that its electron crystal properties are stymied by the presence of a core-shell grain structure. Thermal conductivity, heat capacity, and neutron powder diffraction, complemented by representational analysis and phonon calculations, were used to investigate the thermal transport. This reveals that the heat carrying modes are dominated by Sr motions and that these become more localized upon the introduction of the A-site vacancies, consistent with the observed phonon-glass state. Impedance spectroscopy and direct current electrical measurements were used to probe the electrical properties of insulating and conducting samples. This reveals the coring of grains due to oxidation on cooling from sintering temperatures. The resultant insulating shell limits the thermoelectric power factor to S 2 /ρ = 0.45 mW m -1 K -2 and the figure-of merit to ZT = 0.15 at 900 K for Sr 0.20 La 0.53 → 0.27 Ti 0.95 Nb 0.05 O 3?δ . The thermal properties of these materials are, therefore, controlled by an intrinsic feature of the microstructure (i.e., the A-site vacancies), whereas the electrical properties are grain boundary limited, which in principle can be controlled independently to raise S 2 /ρ and ZT.
Citation
Popuri , S R , Decourt , R , McNulty , J A , Pollet , M , Fortes , A D , Morrison , F D , Senn , M S & Bos , J W G 2019 , ' Phonon-glass and heterogeneous electrical transport in A-site-deficient SrTiO 3 ' , Journal of Physical Chemistry C , vol. 123 , no. 9 , pp. 5198-5208 . https://doi.org/10.1021/acs.jpcc.8b10520
Publication
Journal of Physical Chemistry C
Status
Peer reviewed
DOI
https://doi.org/10.1021/acs.jpcc.8b10520
ISSN
1932-7447
Type
Journal article
Rights
Copyright © 2019 American Chemical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1021/acs.jpcc.8b10520
Description
S.R.P. and J.W.G.B. acknowledge the EPSRC (grant EP/N01717X/1) and Leverhulme Trust (grant RPG-2012-576) for financial support and the STFC for the provision of beam time at ISIS. F.D.M. acknowledges the EPSRC for financial support (grant EP/P024637/1). M.S.S. acknowledges the Royal Society for a University Research Fellowship (grant UF160265).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/19403

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter