Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorNuuttila, Hanna K.
dc.contributor.authorBrundiers, Katharina
dc.contributor.authorDähne, Michael
dc.contributor.authorKoblitz, Jens C.
dc.contributor.authorThomas, Len
dc.contributor.authorCourtene-Jones, Winnie
dc.contributor.authorEvans, Peter G. H.
dc.contributor.authorTurner, John R.
dc.contributor.authorBennell, Jim D.
dc.contributor.authorHiddink, Jan G.
dc.date.accessioned2019-10-21T23:36:21Z
dc.date.available2019-10-21T23:36:21Z
dc.date.issued2018-12
dc.identifier.citationNuuttila , H K , Brundiers , K , Dähne , M , Koblitz , J C , Thomas , L , Courtene-Jones , W , Evans , P G H , Turner , J R , Bennell , J D & Hiddink , J G 2018 , ' Estimating effective detection area of static passive acoustic data loggers from playback experiments with cetacean vocalisations ' , Methods in Ecology and Evolution , vol. 9 , no. 12 , pp. 2362-2371 . https://doi.org/10.1111/2041-210X.13097en
dc.identifier.issn2041-210X
dc.identifier.otherPURE: 256302999
dc.identifier.otherPURE UUID: 2f46d794-9fa5-46f0-93d7-c503f5871271
dc.identifier.otherRIS: urn:47B806E50AE6ABCC2FD4E7104A9411B7
dc.identifier.otherScopus: 85055266277
dc.identifier.otherORCID: /0000-0002-7436-067X/work/54818845
dc.identifier.otherWOS: 000453591800005
dc.identifier.urihttp://hdl.handle.net/10023/18731
dc.descriptionThe study was funded by the Federal Ministry for the Environment, Nature conservation and Nuclear Safety of Germany (FKZ: 0325238), Bangor University and supported by SeaMôr Wildlife Tours.en
dc.description.abstract1. Passive acoustic monitoring (PAM) is used for many vocal species. However, few studies have quantified the fraction of vocalisations captured, and how animal distance and sound source level affect detection probability. Quantifying the detection probability or effective detection area (EDA) of a recorder is a prerequisite for designing and implementing monitoring studies, and essential for estimating absolute density and abundance from PAM data. 2. We tested the detector performance of cetacean click loggers (C-PODs) using artificial and recorded harbour porpoise clicks played at a range of distances and source levels. Detection rate of individual clicks and click sequences (or click trains) was calculated. A Generalised Additive Model (GAM) was used to create a detection function and estimate the effective detection radius (EDR) and EDA for both types of signals. 3. Source level and distance from logger influenced the detection probability. Whilst differences between loggers were evident, detectability was influenced more by the deployment site than within-logger variability. Maximum distance for detecting real recorded porpoise clicks was 566 m. Mean EDR for artificial signals with source level 176 dB re 1 μPa @ 1m was 187 m., and for a recorded vocalisation with source level up to 182 dB re 1 μPa was 188 m. For detections classified as harbour porpoise click sequences the mean EDR was 72 m. 4. The analytical methods presented are a valid technique for estimating the EDA of any logger used in abundance estimates. We present a practical way to obtain data with a cetacean click logger, with the caveat that artificial playbacks cannot mimic real animal behaviour and are at best able to account for some of the variability in detections between sites, removing logger and propagation effects so that what remains is density and behavioural differences. If calibrated against real-world EDAs (e.g., from tagged animals) it is possible to estimate site-specific detection area and absolute density. We highlight the importance of accounting for both biological and environmental factors affecting vocalisations so that accurate estimates of detection area can be determined, and effective monitoring regimes implemented.
dc.language.isoeng
dc.relation.ispartofMethods in Ecology and Evolutionen
dc.rights© 2018, the Authors, Methods in Ecology and Evolution, British Ecological Society. This work has been made available online in accordance with the publisher's policies. This is the author created accepted version manuscript following peer review and as such may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1111/2041-210X.13097en
dc.subjectAbundanceen
dc.subjectC-PODen
dc.subjectDensity estimationen
dc.subjectDetection functionen
dc.subjectEffective detection radiusen
dc.subjectStatic passive acoustic monitoringen
dc.subjectQH301 Biologyen
dc.subjectGC Oceanographyen
dc.subjectDASen
dc.subject.lccQH301en
dc.subject.lccGCen
dc.titleEstimating effective detection area of static passive acoustic data loggers from playback experiments with cetacean vocalisationsen
dc.typeJournal articleen
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews.Statisticsen
dc.contributor.institutionUniversity of St Andrews.School of Mathematics and Statisticsen
dc.contributor.institutionUniversity of St Andrews.Marine Alliance for Science & Technology Scotlanden
dc.contributor.institutionUniversity of St Andrews.Centre for Research into Ecological & Environmental Modellingen
dc.identifier.doihttps://doi.org/10.1111/2041-210X.13097
dc.description.statusPeer revieweden
dc.date.embargoedUntil2019-10-22


This item appears in the following Collection(s)

Show simple item record