Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorFarahi, A.
dc.contributor.authorGuglielmo, V.
dc.contributor.authorEvrard, A. E.
dc.contributor.authorPoggianti, B. M.
dc.contributor.authorAdami, C.
dc.contributor.authorEttori, S.
dc.contributor.authorGastaldello, F.
dc.contributor.authorGiles, P. A.
dc.contributor.authorMaughan, B. J.
dc.contributor.authorRapetti, D.
dc.contributor.authorSereno, M.
dc.contributor.authorAltieri, B.
dc.contributor.authorBaldry, I.
dc.contributor.authorBirkinshaw, M.
dc.contributor.authorBolzonella, M.
dc.contributor.authorBongiorno, A.
dc.contributor.authorBrown, M.
dc.contributor.authorChiappetti, L.
dc.contributor.authorDriver, S. P.
dc.contributor.authorElyiv, A.
dc.contributor.authorGarilli, B.
dc.contributor.authorGuennou, L.
dc.contributor.authorHopkins, A.
dc.contributor.authorIovino, A.
dc.contributor.authorKoulouridis, E.
dc.contributor.authorLiske, J.
dc.contributor.authorMaurogordato, S.
dc.contributor.authorOwers, M.
dc.contributor.authorPacaud, F.
dc.contributor.authorPierre, M.
dc.contributor.authorPlionis, M.
dc.contributor.authorPonman, T.
dc.contributor.authorRobotham, A.
dc.contributor.authorSadibekova, T.
dc.contributor.authorScodeggio, M.
dc.contributor.authorTuffs, R.
dc.contributor.authorValtchanov, I.
dc.date.accessioned2019-10-16T14:30:05Z
dc.date.available2019-10-16T14:30:05Z
dc.date.issued2018-12
dc.identifier.citationFarahi , A , Guglielmo , V , Evrard , A E , Poggianti , B M , Adami , C , Ettori , S , Gastaldello , F , Giles , P A , Maughan , B J , Rapetti , D , Sereno , M , Altieri , B , Baldry , I , Birkinshaw , M , Bolzonella , M , Bongiorno , A , Brown , M , Chiappetti , L , Driver , S P , Elyiv , A , Garilli , B , Guennou , L , Hopkins , A , Iovino , A , Koulouridis , E , Liske , J , Maurogordato , S , Owers , M , Pacaud , F , Pierre , M , Plionis , M , Ponman , T , Robotham , A , Sadibekova , T , Scodeggio , M , Tuffs , R & Valtchanov , I 2018 , ' The XXL Survey : XXIII. The mass scale of XXL clusters from ensemble spectroscopy ' , Astronomy & Astrophysics , vol. 620 , A8 , pp. 1-13 . https://doi.org/10.1051/0004-6361/201731321en
dc.identifier.issn0004-6361
dc.identifier.otherPURE: 261906165
dc.identifier.otherPURE UUID: a417032a-7166-4a38-b09f-2b81e3483091
dc.identifier.otherArXiv: http://arxiv.org/abs/1711.07066v1
dc.identifier.otherScopus: 85057308030
dc.identifier.otherWOS: 000450930100008
dc.identifier.urihttps://hdl.handle.net/10023/18688
dc.description.abstractContext. An X-ray survey with the XMM-Newton telescope, XMM-XXL, has identified hundreds of galaxy groups and clusters in two 25 deg2 fields. Combining spectroscopic and X-ray observations in one field, we determine how the kinetic energy of galaxies scales with hot gas temperature and also, by imposing prior constraints on the relative energies of galaxies and dark matter, infer a power-law scaling of total mass with temperature. Aims. Our goals are: i) to determine parameters of the scaling between galaxy velocity dispersion and X-ray temperature, T300 kpc, for the halos hosting XXL-selected clusters, and; ii) to infer the log-mean scaling of total halo mass with temperature, ⟨lnM200 | T300 kpc, z⟩.Methods. We applied an ensemble velocity likelihood to a sample of >1500 spectroscopic redshifts within 132 spectroscopically confirmed clusters with redshifts z < 0.6 to model, ⟨lnσgal | T300 kpc, z⟩, where σgal is the velocity dispersion of XXL cluster member galaxies and T300 kpc is a 300 kpc aperture temperature. To infer total halo mass we used a precise virial relation for massive halos calibrated by N-body simulations along with a single degree of freedom summarising galaxy velocity bias with respect to dark matter.Results. For the XXL-N cluster sample, we find σgal ∝ T300 kpc 0.63±0.05, a slope significantly steeper than the self-similar expectation of 0.5. Assuming scale-independent galaxy velocity bias, we infer a mean logarithmic mass at a given X-ray temperature and redshift, ⟨ln(E(z)M200/1014 M⊙)|T300 kpc, z⟩ = πT + αT ln (T300 kpc/Tp) + βT ln (E(z)/E(zp)) using pivot values kTp = 2.2 keV and zp = 0.25, with normalization πT = 0.45 ± 0.24 and slope αT = 1.89 ± 0.15. We obtain only weak constraints on redshift evolution, βT = −1.29 ± 1.14. Conclusions. The ratio of specific energies in hot gas and galaxies is scale dependent. Ensemble spectroscopic analysis is a viable method to infer mean scaling relations, particularly for the numerous low mass systems with small numbers of spectroscopic members per system. Galaxy velocity bias is the dominant systematic uncertainty in dynamical mass estimates.
dc.format.extent13
dc.language.isoeng
dc.relation.ispartofAstronomy & Astrophysicsen
dc.rightsCopyright © 2018 ESO. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the final published version of the work, which was originally published at https://doi.org/10.1051/0004-6361/201731321en
dc.subjectGalaxies: clusters: generalen
dc.subjectX-rays:galaxies: clustersen
dc.subjectGalaxies: kinematics and dynamicsen
dc.subjectGalaxies: groups: generalen
dc.subjectQB Astronomyen
dc.subjectQC Physicsen
dc.subjectNDASen
dc.subject.lccQBen
dc.subject.lccQCen
dc.titleThe XXL Survey : XXIII. The mass scale of XXL clusters from ensemble spectroscopyen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.identifier.doihttps://doi.org/10.1051/0004-6361/201731321
dc.description.statusPeer revieweden
dc.identifier.urlhttp://arxiv.org/abs/1711.07066en


This item appears in the following Collection(s)

Show simple item record