St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The XXL Survey : XXIII. The mass scale of XXL clusters from ensemble spectroscopy

Thumbnail
View/Open
Farahi_2019_XXL_Sruvey_XXIII_A_A_A8.pdf (3.151Mb)
Date
12/2018
Author
Farahi, A.
Guglielmo, V.
Evrard, A. E.
Poggianti, B. M.
Adami, C.
Ettori, S.
Gastaldello, F.
Giles, P. A.
Maughan, B. J.
Rapetti, D.
Sereno, M.
Altieri, B.
Baldry, I.
Birkinshaw, M.
Bolzonella, M.
Bongiorno, A.
Brown, M.
Chiappetti, L.
Driver, S. P.
Elyiv, A.
Garilli, B.
Guennou, L.
Hopkins, A.
Iovino, A.
Koulouridis, E.
Liske, J.
Maurogordato, S.
Owers, M.
Pacaud, F.
Pierre, M.
Plionis, M.
Ponman, T.
Robotham, A.
Sadibekova, T.
Scodeggio, M.
Tuffs, R.
Valtchanov, I.
Keywords
Galaxies: clusters: general
X-rays:galaxies: clusters
Galaxies: kinematics and dynamics
Galaxies: groups: general
QB Astronomy
QC Physics
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Context. An X-ray survey with the XMM-Newton telescope, XMM-XXL, has identified hundreds of galaxy groups and clusters in two 25 deg2 fields. Combining spectroscopic and X-ray observations in one field, we determine how the kinetic energy of galaxies scales with hot gas temperature and also, by imposing prior constraints on the relative energies of galaxies and dark matter, infer a power-law scaling of total mass with temperature. Aims. Our goals are: i) to determine parameters of the scaling between galaxy velocity dispersion and X-ray temperature, T300 kpc, for the halos hosting XXL-selected clusters, and; ii) to infer the log-mean scaling of total halo mass with temperature, ⟨lnM200 | T300 kpc, z⟩.Methods. We applied an ensemble velocity likelihood to a sample of >1500 spectroscopic redshifts within 132 spectroscopically confirmed clusters with redshifts z < 0.6 to model, ⟨lnσgal | T300 kpc, z⟩, where σgal is the velocity dispersion of XXL cluster member galaxies and T300 kpc is a 300 kpc aperture temperature. To infer total halo mass we used a precise virial relation for massive halos calibrated by N-body simulations along with a single degree of freedom summarising galaxy velocity bias with respect to dark matter.Results. For the XXL-N cluster sample, we find σgal ∝ T300 kpc 0.63±0.05, a slope significantly steeper than the self-similar expectation of 0.5. Assuming scale-independent galaxy velocity bias, we infer a mean logarithmic mass at a given X-ray temperature and redshift, ⟨ln(E(z)M200/1014 M⊙)|T300 kpc, z⟩ = πT + αT ln (T300 kpc/Tp) + βT ln (E(z)/E(zp)) using pivot values kTp = 2.2 keV and zp = 0.25, with normalization πT = 0.45 ± 0.24 and slope αT = 1.89 ± 0.15. We obtain only weak constraints on redshift evolution, βT = −1.29 ± 1.14. Conclusions. The ratio of specific energies in hot gas and galaxies is scale dependent. Ensemble spectroscopic analysis is a viable method to infer mean scaling relations, particularly for the numerous low mass systems with small numbers of spectroscopic members per system. Galaxy velocity bias is the dominant systematic uncertainty in dynamical mass estimates.
Citation
Farahi , A , Guglielmo , V , Evrard , A E , Poggianti , B M , Adami , C , Ettori , S , Gastaldello , F , Giles , P A , Maughan , B J , Rapetti , D , Sereno , M , Altieri , B , Baldry , I , Birkinshaw , M , Bolzonella , M , Bongiorno , A , Brown , M , Chiappetti , L , Driver , S P , Elyiv , A , Garilli , B , Guennou , L , Hopkins , A , Iovino , A , Koulouridis , E , Liske , J , Maurogordato , S , Owers , M , Pacaud , F , Pierre , M , Plionis , M , Ponman , T , Robotham , A , Sadibekova , T , Scodeggio , M , Tuffs , R & Valtchanov , I 2018 , ' The XXL Survey : XXIII. The mass scale of XXL clusters from ensemble spectroscopy ' , Astronomy & Astrophysics , vol. 620 , A8 , pp. 1-13 . https://doi.org/10.1051/0004-6361/201731321
Publication
Astronomy & Astrophysics
Status
Peer reviewed
DOI
https://doi.org/10.1051/0004-6361/201731321
ISSN
0004-6361
Type
Journal article
Rights
Copyright © 2018 ESO. This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the final published version of the work, which was originally published at https://doi.org/10.1051/0004-6361/201731321
Collections
  • University of St Andrews Research
URL
http://arxiv.org/abs/1711.07066
URI
http://hdl.handle.net/10023/18688

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter