St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Three-dimensional quasi-geostrophic vortex equilibria with m−fold symmetry

Thumbnail
View/Open
jnr18_r3.pdf (4.567Mb)
Date
25/03/2019
Author
Reinaud, Jean Noel
Keywords
Quasi-geostrophic flows
Vortex instability
Vortex interactions
QA Mathematics
QC Physics
T-NDAS
BDC
R2C
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We investigate arrays of m three-dimensional, unit-Burger-number, quasi-geostrophic vortices in mutual equilibrium whose centroids lie on a horizontal circular ring; or m + 1 vortices where the additional vortex lies on the vertical ‘central’ axis passing through the centre of the array. We first analyse the linear stability of circular point vortex arrays. Three distinct categories of vortex arrays are considered. In the first category, the m identical point vortices are equally spaced on a circular ring and no vortex is located on the vertical central axis. In the other two categories, a ‘central’ vortex is added. The latter two categories differ by the sign of the central vortex. We next turn our attention to finite volume vortices for the same three categories. The vortices consist of finite volumes of uniform potential vorticity and the equilibrium vortex arrays have an (imposed) m−fold symmetry. For simplicity all vortices have the same volume and the same potential vorticity, in absolute value. For such finite volume vortex arrays, we determine families of equilibria which are spanned by the ratio of a distance separating the vortices and the array centre to the vortices' mean radius. We determine numerically the shape of the equilibria for m = 2 up to m = 7, for each three categories, and we address their linear stability. For the m−vortex circular arrays, all configurations with m ≥ 6 are unstable. Point vortex arrays are linearly stable for m < 6. Finite-volume vortices may, however, be sensitive to instabilities deforming the vortices for m < 6 if the ratio of the distance separating the vortices to their mean radius is smaller than a threshold depending on m. Adding a vortex on the central axis modifies the overall stability properties of the vortex arrays. For m = 2, a central vortex tends to destabilise the vortex array unless the central vortex has opposite sign and is intense. For m > 2, the unstable regime can be obtained if the strength of the central vortex is larger in magnitude than a threshold depending on the number of vortices. This is true whether the central vortex has the same sign as or the opposite sign to the peripheral vortices. A moderate strength like-signed central vortex tends, however, to stabilise the vortex array when located near the plane containing the array. On the contrary, most of the vortex arrays with an opposite-signed central vortex are unstable.
Citation
Reinaud , J N 2019 , ' Three-dimensional quasi-geostrophic vortex equilibria with m −fold symmetry ' , Journal of Fluid Mechanics , vol. 863 , pp. 32-59 . https://doi.org/10.1017/jfm.2018.989
Publication
Journal of Fluid Mechanics
Status
Peer reviewed
DOI
https://doi.org/10.1017/jfm.2018.989
ISSN
0022-1120
Type
Journal article
Rights
© 2019, Cambridge University Press. This work has been made available online in accordance with the publisher's policies. This is the author created accepted version manuscript following peer review and as such may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1017/jfm.2018.989
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/18144

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter