St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigation of fluorite and perovskite materials for energy applications

Date
26/06/2019
Author
Abdoun, Amane
Supervisor
Irvine, John T. S.
Funder
Han’guk Kwahak Kisul Yŏn’guso
Keywords
Fuel cells
Fluorite
Perovskite
Ceria
Hydrogen processes
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Reducing the carbon footprint of the actual energy supply system is of vital importance so as to address the issue of climate change. Thus, the development of energy conversion & storage technologies, tackling the electricity’s intermittency of the renewables source technologies, is of great interest. Solid oxide fuel cells (SOFCs) possess valuable advantages compared to the other energy storage & conversion devices, such as its long-term durability, high values of conductivities or its utilization with various types of gases. However, issues still exist on the hydrogen electrode. Therefore, the development of alternative hydrogen electrodes represents a challenge as it needs to meet several requirements, such as good ionic and electronic conductivities, redox stability or being single-phase. Copper doped ceria (CCO) is considered as a promising candidate. This work focused on solving some issues inherent to this material. The challenge of synthesizing a single-phase solid-solution of CCO has been resolved and synthesis’ parameters influences were investigated. Cu solubility has been determined and equals to 10%[sub]mol for the solid-solutions. The absence of consensus concerning the oxidation states of the cations has also been inquired. In both surface and bulk, Cu +2 is declared as the main oxidation state of Cu. However, the presence of Cu +1 is assured. This confirms the significant concentration of Ce +3 detected in CCO, counter-balancing the charge imbalance due to the creation of oxygen vacancies. In addition to the obtaining of the phase diagram of copper doped ceria, preliminary results on the application of exsolution of nanoparticles on CCO fluorites were obtained and Cu enriched nanoparticles were generated on the surface. Ru-doped strontium yttrium titanate (SYTRu) was also investigated as alternative anode material. In this work, the main issue of this material refers to the incorporation of Ru into the perovskite lattice. Evidences concerning the real substitution of Ti by Ru were obtained by X-ray absorption spectroscopy (XAS). Furthermore, reduced samples showed Ru nanoparticles on their surface.
DOI
https://doi.org/10.17630/10023-17857
Type
Thesis, PhD Doctor of Philosophy
Rights
Embargo Date: 2021-05-24
Embargo Reason: Thesis restricted in accordance with University regulations. Print and electronic copy restricted until 24th May 2021
Collections
  • Chemistry Theses
URI
http://hdl.handle.net/10023/17857

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter