St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dissipative particle dynamics simulation of critical pore size in a lipid bilayer membrane

Thumbnail
View/Open
Bowman_2019_RSOS_Dissipative_CC.pdf (1.421Mb)
Date
06/03/2019
Author
Bowman, Clark
Chaplain, Mark
Matzavinos, Anastasios
Funder
EPSRC
Grant ID
EP/N014642/1
Keywords
Dissipative particle dynamics
Lipid membranes
Computational simulation
QA75 Electronic computers. Computer science
QH301 Biology
RC0254 Neoplasms. Tumors. Oncology (including Cancer)
T Technology
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We investigate with computer simulations the critical radius of pores in a lipid bilayer membrane. Ilton et al. (Ilton et al. 2016 Phys. Rev. Lett.117, 257801 (doi:10.1103/PhysRevLett.117.257801)) recently showed that nucleated pores in a homopolymer film can increase or decrease in size, depending on whether they are larger or smaller than a critical size which scales linearly with film thickness. Using dissipative particle dynamics, a particle-based simulation method, we investigate the same scenario for a lipid bilayer membrane whose structure is determined by lipid–water interactions. We simulate a perforated membrane in which holes larger than a critical radius grow, while holes smaller than the critical radius close, as in the experiment of Ilton et al. (Ilton et al. 2016 Phys. Rev. Lett.117, 257801 (doi:10.1103/PhysRevLett.117.257801)). By altering key system parameters such as the number of particles per lipid and the periodicity, we also describe scenarios in which pores of any initial size can seal or even remain stable, showing a fundamental difference in the behaviour of lipid membranes from polymer films.
Citation
Bowman , C , Chaplain , M & Matzavinos , A 2019 , ' Dissipative particle dynamics simulation of critical pore size in a lipid bilayer membrane ' , Royal Society Open Science , vol. 6 , no. 3 . https://doi.org/10.1098/rsos.181657
Publication
Royal Society Open Science
Status
Peer reviewed
DOI
https://doi.org/10.1098/rsos.181657
ISSN
2054-5703
Type
Journal article
Rights
Copyright © 2019 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
Description
C.B. was partially supported by the NSF through grant no. DMS-1148284. M.C. gratefully acknowledges support of EPSRC grant no. EP/N014642/1 (EPSRC Centre for Multiscale Soft Tissue Mechanics–With Application to Heart & Cancer). A.M. was partially supported by the NSF through grant nos. DMS-1521266 and DMS-1552903.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/17338

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter