Developmental changes in spinal neuronal properties, motor network configuration and neuromodulation at free-swimming stages of Xenopus tadpoles
Abstract
We describe a novel preparation of the isolated brainstem and spinal cord from pro-metamorphic tadpole stages of the South African clawed frog (Xenopus laevis) that permits whole cell patch-clamp recordings from neurons in the ventral spinal cord. Previous research on earlier stages of the same species has provided one of the most detailed understandings of the design and operation of a CPG circuit. Here we have addressed how development sculpts complexity from this more basic circuit. The preparation generates bouts of fictive31 swimming activity either spontaneously or in response to electrical stimulation of the optic tectum, allowing an investigation into how the neuronal properties, activity patterns and neuromodulation of locomotor rhythm generation change during development. We describe an increased repertoire of cellular responses compared to younger larval stages and investigate the cellular level effects of nitrergic neuromodulation as well as the development of a sodium pump-mediated ultra-slow afterhyperpolarisation (usAHP) in these free-swimming larval animals.
Citation
Currie , S P & Sillar , K T 2018 , ' Developmental changes in spinal neuronal properties, motor network configuration and neuromodulation at free-swimming stages of Xenopus tadpoles ' , Journal of Neurophysiology , vol. 119 , no. 3 , pp. 786-795 . https://doi.org/10.1152/jn.00219.2017
Publication
Journal of Neurophysiology
Status
Peer reviewed
ISSN
0022-3077Type
Journal article
Rights
© 2018, American Physiological Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1152/jn.00219.2017
Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.