St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Developmental changes in spinal neuronal properties, motor network configuration and neuromodulation at free-swimming stages of Xenopus tadpoles

Thumbnail
View/Open
Currie_2017_Developmental_changes_JNeurophysiol_AAM.pdf (14.54Mb)
Date
03/2018
Author
Currie, Stephen Paul
Sillar, Keith Thomas
Keywords
Development
Locomotion
Nitric oxide
Neuromodulation
Xenopus
QP Physiology
RC0321 Neuroscience. Biological psychiatry. Neuropsychiatry
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We describe a novel preparation of the isolated brainstem and spinal cord from pro-metamorphic tadpole stages of the South African clawed frog (Xenopus laevis) that permits whole cell patch-clamp recordings from neurons in the ventral spinal cord. Previous research on earlier stages of the same species has provided one of the most detailed understandings of the design and operation of a CPG circuit. Here we have addressed how development sculpts complexity from this more basic circuit. The preparation generates bouts of fictive31 swimming activity either spontaneously or in response to electrical stimulation of the optic tectum, allowing an investigation into how the neuronal properties, activity patterns and neuromodulation of locomotor rhythm generation change during development. We describe an increased repertoire of cellular responses compared to younger larval stages and investigate the cellular level effects of nitrergic neuromodulation as well as the development of a sodium pump-mediated ultra-slow afterhyperpolarisation (usAHP) in these free-swimming larval animals.
Citation
Currie , S P & Sillar , K T 2018 , ' Developmental changes in spinal neuronal properties, motor network configuration and neuromodulation at free-swimming stages of Xenopus tadpoles ' , Journal of Neurophysiology , vol. 119 , no. 3 , pp. 786-795 . https://doi.org/10.1152/jn.00219.2017
Publication
Journal of Neurophysiology
Status
Peer reviewed
DOI
https://doi.org/10.1152/jn.00219.2017
ISSN
0022-3077
Type
Journal article
Rights
© 2018, American Physiological Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1152/jn.00219.2017
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/17177

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter