Show simple item record

Files in this item


Item metadata

dc.contributor.authorYang, Zhengyi
dc.contributor.authorCole, Katy L.H.
dc.contributor.authorQiu, Yongqiang
dc.contributor.authorSomorjai, Ildiko Maureen Lara
dc.contributor.authorWijesinghe, Philip
dc.contributor.authorNylk, Jonathan
dc.contributor.authorCochran, Sandy
dc.contributor.authorSpalding, Gabriel C.
dc.contributor.authorLyons, David A.
dc.contributor.authorDholakia, Kishan
dc.identifier.citationYang , Z , Cole , K L H , Qiu , Y , Somorjai , I M L , Wijesinghe , P , Nylk , J , Cochran , S , Spalding , G C , Lyons , D A & Dholakia , K 2019 , ' Light sheet microscopy with acoustic sample confinement ' , Nature Communications , vol. 10 , 669 .
dc.identifier.otherPURE: 250513601
dc.identifier.otherPURE UUID: db1e0b53-4b8a-4f63-97cc-51dc255e7e75
dc.identifier.otherORCID: /0000-0002-2977-4929/work/53857092
dc.identifier.otherORCID: /0000-0001-5243-6664/work/53857099
dc.identifier.otherORCID: /0000-0002-8378-7261/work/54516680
dc.identifier.otherScopus: 85061240428
dc.identifier.otherWOS: 000458175300018
dc.descriptionFunding: UK Engineering and Physical Sciences Research Council (EPSRC) (grant numbers EP/P030017/1, EP/M000869/1 and EP/R004854/1) for funding. Work in the Somorjai lab is supported by the Wellcome Trust ISSF, the RS Macdonald Trust Charitable and EU Horizon 2020 INFRADEV ”CORBEL” (grant number 654248).en
dc.description.abstractContactless sample confinement would enable a whole host of new studies in developmental biology and neuroscience, in particular, when combined with long-term, wide-field optical imaging. To achieve this goal, we demonstrate a contactless acoustic gradient force trap for sample confinement in light sheet microscopy. Our approach allows the integration of real-time environmentally controlled experiments with wide-field low photo-toxic imaging, which we demonstrate on a variety of marine animal embryos and larvae. To illustrate the key advantages of our approach, we provide quantitative data for the dynamic response of the heartbeat of zebrafish larvae to verapamil and norepinephrine, which are known to affect cardiovascular function. Optical flow analysis allows us to explore the cardiac cycle of the zebrafish and determine the changes in contractile volume within the heart. Overcoming the restrictions of sample immobilisation and mounting can open up a broad range of studies, with real-time drug-based assays and biomechanical analyses.
dc.relation.ispartofNature Communicationsen
dc.rights© The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit
dc.subjectQC Physicsen
dc.subjectT Technologyen
dc.titleLight sheet microscopy with acoustic sample confinementen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews.School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews.School of Biologyen
dc.contributor.institutionUniversity of St Andrews.Marine Alliance for Science & Technology Scotlanden
dc.contributor.institutionUniversity of St Andrews.Scottish Oceans Instituteen
dc.contributor.institutionUniversity of St Andrews.Biomedical Sciences Research Complexen
dc.contributor.institutionUniversity of St Andrews.Centre for Biophotonicsen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record