St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Pulse EPR distance measurements to study multimers and multimerisation

Thumbnail
View/Open
Bode_NewViews_Manuscript_revised_no_highlight.pdf (729.0Kb)
Date
2018
Author
Ackermann, Katrin
Bode, Bela E.
Funder
Carnegie Trust
EPSRC
The Wellcome Trust
European Commission
Grant ID
70098
EP/M024660/1
099149/Z/12/Z
Keywords
Electron paramagnetic resonance
PELDOR
DEER
RIDME
Multi-spin
QD Chemistry
QC Physics
DAS
Metadata
Show full item record
Abstract
Pulse dipolar electron paramagnetic resonance (PD-EPR) has become a powerful tool for structural biology determining distances on the nanometre scale. Recent advances in hardware, methodology, and data analysis have widened the scope to complex biological systems. PD-EPR can be applied to systems containing lowly populated conformers or displaying large intrinsic flexibility, making them all but intractable for cryo-electron microscopy and crystallography. Membrane protein applications are of particular interest due to the intrinsic difficulties for obtaining high-resolution structures of all relevant conformations. Many drug targets involved in critical cell functions are multimeric channels or transporters. Here, common approaches for introducing spin labels for PD-EPR cause the presence of more than two electron spins per multimeric complex. This requires careful experimental design to overcome detrimental multi-spin effects and to secure sufficient distance resolution in presence of multiple distances. In addition to obtaining mere distances, PD-EPR can also provide information on multimerisation degrees allowing to study binding equilibria and to determine dissociation constants.
Citation
Ackermann , K & Bode , B E 2018 , ' Pulse EPR distance measurements to study multimers and multimerisation ' , Molecular Physics , vol. 116 , no. 12 , pp. 1513-1521 . https://doi.org/10.1080/00268976.2017.1421324
Publication
Molecular Physics
Status
Peer reviewed
DOI
https://doi.org/10.1080/00268976.2017.1421324
ISSN
0026-8976
Type
Journal article
Rights
© 2018 Informa UK Limited, trading as Taylor & Francis Group. This work has been made available online in accordance with the publisher’s policies. This is the author created accepted version manuscript following peer review and as such may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1080/00268976.2017.1421324
Description
This work was supported by funding from the European Union (Marie Curie Actions REA 334496), the Carnegie Trust (70098), the EPSRC (EP/M024660/1) and a Wellcome Trust multi-user equipment grant (099149/Z/12/Z).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/16782

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter