St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Degradation of the chemotherapy drug 5-fluorouracil on medical-grade silver surfaces

Thumbnail
View/Open
Mazzola_2017_ASS_Medical_gradeSilverSurfaces_AAM.pdf (1.349Mb)
Date
30/03/2018
Author
Risinggård, Helene Kjær
Cooil, Simon
Mazzola, Federico
Hu, Di
Kjærvik, Marit
Østli, Elise Ramleth
Patil, Nilesh
Preobrajenski, Alexei
Evans, D. Andrew
Breiby, Dag W.
Trinh, Thuat T.
Wells, Justin W.
Keywords
Surface science
Chemotherapy
DFT
Photoemission
Fluorouracil
Silver
QC Physics
TP Chemical technology
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The degradation of the chemotherapy drug 5-Fluorouracil by a non-pristine metal surfaces is studied. Using Density Functional Theory, X-ray Photoelectron Spectroscopy and X-ray Absorption Spectroscopy we show that the drug is entirely degraded by medical-grade silver surfaces, already at body temperature, and that all of the fluorine has left the molecule, presumably as HF. Remarkably, this degradation is even more severe than that reported previously for 5-Fluorouracil on a pristine monocrystalline silver surface (in which case 80% of the drug reacted at body temperature) Mazzola et al. (2015). We conclude that the observed reaction is due to a reaction pathway, driven by H to F attraction between molecules on the surface, which results in the direct formation of HF; a pathway which is favoured when competing pathways involving reactive Ag surface sites are made unavailable by environmental contamination. Our measurements indicate that realistically cleaned, non-pristine silver alloys, which are typically used in medical applications, can result in severe degradation of 5-Fluorouracil, with the release of HF – a finding which may have important implications for the handling of chemotherapy drugs.
Citation
Risinggård , H K , Cooil , S , Mazzola , F , Hu , D , Kjærvik , M , Østli , E R , Patil , N , Preobrajenski , A , Evans , D A , Breiby , D W , Trinh , T T & Wells , J W 2018 , ' Degradation of the chemotherapy drug 5-fluorouracil on medical-grade silver surfaces ' , Applied Surface Science , vol. 435 , pp. 1213-1219 . https://doi.org/10.1016/j.apsusc.2017.11.221
Publication
Applied Surface Science
Status
Peer reviewed
DOI
https://doi.org/10.1016/j.apsusc.2017.11.221
ISSN
0169-4332
Type
Journal article
Rights
© 2017 Elsevier B.V. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1016/j.apsusc.2017.11.221
Description
This research was supported in part with computational resources at NTNU provided by NOTUR (project nn9331k). NP and DWB acknowledge The Research Council of Norway for the financial support through M-ERA.NET project RADESOL under the European Union's seventh framework programme (FP/2007-2013), grant agreement no. 234648/O70.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/16555

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter