St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sulfur-tolerant, exsolved Fe–Ni alloy nanoparticles for CO oxidation

Thumbnail
View/Open
Papaioannou_2018_TC_Fe_Ni_CC.pdf (1.195Mb)
Date
05/10/2018
Author
Papaioannou, Evangelos I.
Neagu, Dragos
Ramli, Wan K.W.
Irvine, John T. S.
Metcalfe, Ian S.
Keywords
CO oxidation
Exsolution
Metal nanoparticles
Perovkites
Sulphur tolerance
QD Chemistry
Catalysis
Chemistry(all)
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Metallic nanoparticles exsolved at the surface of perovskite oxides have been recently shown to unlock superior catalytic activity and durability towards various chemical reactions of practical importance. For example, for the CO oxidation reaction, exsolved Ni nanoparticles in oxidised form exhibit site activities approaching those of noble metals. This is of particular interest for the prospect of replacing noble metals with earth-abundant metal/metal oxide catalysts in the automotive exhaust control industry. Here we show that for the CO oxidation reaction, the functionality of exsolved Ni nanoparticles can be further improved when Fe is co-exsolved with Ni, as Fe–Ni alloy nanoparticles, eventually forming mixed oxide nanoparticles. As compared to the Ni nanoparticles, the alloy nanoparticles exhibit higher site activities, greatly improved durability over 170 h of continuous testing and increased tolerance towards sulphur-based atmospheres. Similarly to the single metal nanoparticles, the alloys demonstrate outstanding microstructural stability and high tolerance towards coking. These results open additional directions for tailoring the activity and durability of exsolved materials for the CO oxidation reaction and beyond.
Citation
Papaioannou , E I , Neagu , D , Ramli , W K W , Irvine , J T S & Metcalfe , I S 2018 , ' Sulfur-tolerant, exsolved Fe–Ni alloy nanoparticles for CO oxidation ' , Topics in Catalysis , vol. First Online . https://doi.org/10.1007/s11244-018-1053-8
Publication
Topics in Catalysis
Status
Peer reviewed
DOI
https://doi.org/10.1007/s11244-018-1053-8
ISSN
1022-5528
Type
Journal article
Rights
Copyright © The Author(s) 2018. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Description
The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement Number 320725 and from the EPSRC via the research grants EP/P024807/1, EP/P009050/1, EP/P007767/1, EP/J016454/1 and EP/L017008/1. Data supporting this publication is openly available under an ‘Open Data Commons Open Database License’. Additional metadata are available at: https://doi.org/10.17634/161340-1.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/16326

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter