St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Influence of sampling and disturbance history on climatic sensitivity of temperature-limited conifers

Thumbnail
View/Open
Rydval_et_al._2018.pdf (3.228Mb)
Date
26/07/2018
Author
Rydval, Miloš
Druckenbrod, Daniel L
Svoboda, Miroslav
Trotsiuk, Volodymyr
Janda, Pavel
Mikoláš, Martin
Čada, Vojtěch
Bače, Radek
Teodosiu, Marius
Wilson, Rob
Keywords
Blue intensity
Climatic signal
Disturbance detection
Norway spruce
Romanian Carpathian Mountains
Sampling bias
Tree rings
GE Environmental Sciences
SD Forestry
NDAS
SDG 13 - Climate Action
Metadata
Show full item record
Abstract
Accurately capturing medium- to low-frequency trends in tree-ring data is vital to assessing climatic response and developing robust reconstructions of past climate. Non-climatic disturbance can affect growth trends in tree-ring-width (RW) series and bias climate information obtained from such records. It is important to develop suitable strategies to ensure the development of chronologies that minimize these medium- to low-frequency biases. By performing high density sampling (760 trees) over a ~40-ha natural high-elevation Norway spruce (Picea abies) stand in the Romanian Carpathians, this study assessed the suitability of several sampling strategies for developing chronologies with an optimal climate signal for dendroclimatic purposes. There was a roughly equal probability for chronologies (40 samples each) to express a reasonable (r = 0.3?0.5) to non-existent climate signal. While showing a strong high-frequency response, older/larger trees expressed the weakest overall temperature signal. Although random sampling yielded the most consistent climate signal in all sub-chronologies, the outcome was still sub-optimal. Alternative strategies to optimize the climate signal, including very high replication and principal components analysis, were also unable to minimize this disturbance bias and produce chronologies adequately representing climatic trends, indicating that larger scale disturbances can produce synchronous pervasive disturbance trends that affect a large part of a sampled population. The Curve Intervention Detection (CID) method, used to identify and reduce the influence of disturbance trends in the RW chronologies, considerably improved climate signal representation (from r = 0.28 before correction to r = 0.41 after correction for the full 760 sample chronology over 1909?2009) and represents a potentially important new approach for assessing disturbance impacts on RW chronologies. Blue intensity (BI) also shows promise as a climatically more sensitive variable which, unlike RW, does not appear significantly affected by disturbance. We recommend that studies utilizing RW chronologies to investigate medium- to long-term climatic trends also assess disturbance impact on those series.
Citation
Rydval , M , Druckenbrod , D L , Svoboda , M , Trotsiuk , V , Janda , P , Mikoláš , M , Čada , V , Bače , R , Teodosiu , M & Wilson , R 2018 , ' Influence of sampling and disturbance history on climatic sensitivity of temperature-limited conifers ' , The Holocene , vol. Online First . https://doi.org/10.1177/0959683618782605
Publication
The Holocene
Status
Peer reviewed
DOI
https://doi.org/10.1177/0959683618782605
ISSN
0959-6836
Type
Journal article
Rights
Copyright © 2018, © SAGE Publications. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at: https://doi.org/10.1177%2F0959683618782605
Description
The study was supported by the institutional project MSMT (CZ.02.1.01/0.0/0.0/16_019/0000803) and the Czech Ministry of Education (Project INTER-COST No. LCT17055).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/15778

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter